Abstrakt

Cel: Celem artykułu jest przedstawienie wybranych problemów związanych z kierunkami zmian w ubraniach stanowiących wyposażenie strażaka-ratownika oraz będących częścią standardowych środków ochrony indywidualnej.

Wprowadzenie: Rozwój w technologii oraz gospodarce powoduje, że w naszym otoczeniu pojawiają się produkty o coraz bardziej złożonych strukturach. W przypadku pożaru mogą być emitowane substancje zagrażające zdrowiu i życiu strażaka. Środki ochrony indywidualnej stosowane przez straż pożarną (w tym także odzież) muszą być zatem stale dostosowywane do zmieniającego się środowiska. Modyfikacjom podlegają zarówno włókna, jak i struktura, czy warstwowość odzieży. Coraz częściej użytkownicy tych wyrobów oczekują odpowiedniej odporności na działanie czynników biologicznych i chemicznych. Jest to rezultat rosnącej liczby czynników stanowiących zagrożenie podczas pracy strażaków. Mimo zastosowanych dotychczas modyfikacji ubrań nadal nie można wykluczyć ryzyka przenikania do powierzchni skóry strażaka substancji toksycznych, np. węglowodorów poliaromatycznych, będących produktami spalania w środowisku pożaru, oraz kwaśnych gazów. Równoczesne oddziaływanie promieniowania cieplnego w środowisku pożarowym oraz wykonywana przez strażaka praca fizyczna intensyfikują znacząco wymianę ciepła i masy w ochronach osobistych. Coraz większą rolę odgrywa zatem interakcja konstrukcji ochronnych z organizmem ratownika. W celu zwiększenia odporności odzieży przy jednoczesnym utrzymaniu bądź nawet zmniejszeniu jej wagi zastosowanie znajdują modyfikacje bazujące na nanotechnologii. Należy jednak zauważyć, iż niejednokrotnie zmiany dotyczą jednego aspektu, np. wilgotności, z pominięciem innych zagrożeń wynikających z charakterystyki fizyko-chemicznej substancji emitowanych podczas zdarzenia.

Metodologia: Artykuł został opracowany na podstawie przeglądu wybranej literatury z zakresu poruszanej tematyki.

Wnioski: Modyfikacje wprowadzane we włóknach czy też strukturze i składzie odzieży pozwalają na otrzymanie produktu charakteryzującego się lepszymi parametrami w zakresie ochrony strażaka. Należy jednak zauważyć, iż powinny one uwzględniać wszystkie możliwe drogi narażenia, a nie skupiać się na jednym, wybranym parametrze. Dlatego też niezbędne są dalsze prace nad dostosowaniem odzieży do pojawiających się zagrożeń.

Słowa kluczowe: innowacje, środki ochrony indywidualnej strażaka, ubrania specjalne straży pożarnej

Typ artykułu: artykuł przeglądowy

Bibliografia:

  1. ASTM F1959. Standard Test Method for Determining the Arc Rating of Materials for Clothing. 2017, pp. 14, https://doi.org/10.1520/F1959_F1959M-14E01.
  2. ASTM F1506-22. Standard Performance Specification for Flame Resistant and Electric Arc Rated Protective Clothing Worn by Workers Exposed to Flames and Electric Arcs. 2022, pp. 12, https://doi.org/10.1520/F1506-22.
  3. Stoll A.M., Chianta M.A., Burn Protection and Prevention in Convective and Radiant Heat Transfer, “Aerospace Medicine” 1968, 39, 1097–1100.
  4. Song G., Wang F., Firefighters’ Clothing and Equipment: Performance, Protection, and Comfort, CRC Press Taylor & Francis Group. 2019, https://doi.org/10.1201/9780429444876.
  5. Wiśniewski T.S., Wymiana ciepła w ochronach osobistych strażaków, Wyd. Instytut Techniki Cieplnej, Politechnika Warszawska, Warszawa 2016.
  6. PN-EN-1486:2009 Odzież ochronna. Metody badania i wymagania dla odzieży odbijającej napromieniowanie cieplne przeznaczonej do specjalnej akcji przeciwpożarowej.
  7. Wesołowska M., Delczyk-Olejniczak B.,Włókna w balistyce – dziś i jutro, „Techniczne Wyroby Włókiennicze” 2011, 1/2, 41–50.
  8. Mandal S., Camenzind M., Annaheim S., Rossi R.M., Firefighters’ Protective Clothing and Equipment, w: Song G., Wang F., Firefighters’ Clothing and Equipment: Performance, Protection, and Comfort, CRC Press Taylor & Francis Group, 2019, Ch. 2, 35.
  9. Bourbigot S., Flame retardancy of textiles: New approaches [w] Horrocks A.R., Price D. (eds), Advances in Fire Retardant Materials. United Kingdom, Woodhead Publishing Limited, 2008, 9–40.
  10. Miedzińska D., Wolański R., Review of fibers and fabbrics used for special services protective clothing in terms of their mechanical and thermal properties , “Biuletyn Wojskowej Akademii Technicznej” 2022, 71(1), 15–34, https://doi.org/10.5604/01.3001.0016.1379.
  11. Czerwienko D., Lemańska K., Pastuszka Ł., Technologia materiałów na ubrania strażackie, BITP Vol. 28 Issue 4, 2012, pp. 119–129.
  12. Samanta A.K., Baghchi A., Biswas S.K., Fire retardant finishing of jute fabric and its thermal behaviour using phosphorous and nitrogen based compound , “Journal of Polymer Materials” 2011, 28(2), 149–169.
  13. Tasukada M., Khan M.M.R., Tanaka T., Morikawa H., Thermal characteristics and physical properties of silk fabricsgrafted with phosphorous flame retardant agents, “Textile Research Journal” 2011, 81(15), 1541–1548, https://doi.org/10.1177/0040517511407376.
  14. Gielżecki J., Mania R., Marszałek, Wolański R., Deposition of Thin (Ti,Si)N Reflecive Layers on Textiles Substrates, “Przegląd Elektrotechniczny” 2022, 98(9), 235–238, https://doi.org/10.15199/48.2022.09.55.
  15. Song G., Lu Y., Flame resistant textiles for structural and proximity firefighting [w] Kilinc F.S., Handbook of fire resistant textiles, Woodhead Publishing Limited, 2013. Ch. 19, 520–548, https://doi.org/10.1533/9780857098931.4.520.
  16. Shaid A., Wang L., Padhye R., Bhuyian M.A.R., Aerogel nonwoven as reinforcement and batting material for firefighter’s protective clothing: a comparative study, “Journal of Sol-Gel Science and technology” 2018, 87(1), 95–104, https://doi.org/10.1007/s10971-018-4689-8.
  17. Liu X.X., Lin L.T., Wang X.D., Zheng H.Q., Study on temperature response and thermal protection of shape memory combination fabrics, w: Textile Bioengineering and Informatics Symposium Proceedings, Y. Li, X.N. Luo, Y.F. Liu (red.), Textile Bioengineering and Informatics Society, Beijing, China: 2011, 230–236.
  18. Dadi H.H., Literature Overview of Smart Textiles, Swedish School of Textiles, Master of Textile Technology, University of Borås, Sweden 2010.
  19. Chitrphiromsri P., Kuznetsov A.V., Song G., Barker R.L.,Investigation of feasibility of developing intelligent firefighter-protective garments based on the utilization of a water-injection system, “Numerical Heat Transfer Applications” 2006, 49, 427–450, https://doi.org/10.1080/10407780500359869.
  20. Mandal S., Annaheim S., Greve J., Camenzind M., Rossi R.M., Modeling for predicting the thermal protective and thermo-physiological comfort performance of fabrics used in firefighters’ clothing “Textile Research Journal” 2018, 89(14), 2836–2849, https://doi.org/10.1177/0040517518803779.
  21. Lessan F., Montazer M., Moghadam M., A novel durable flame-retardant cotton fabric using sodium hypophosphite, nano TiO2 and maleic acid, “Thermochim. Acta” 2011, 520, Issue 1–2, 48–54, https://doi.org/10.1016/j.tca.2011.03.012.
  22. Rabajczyk A., Zielecka M., Popielarczyk T., Sowa T., Nanotechnology in Fire Protection – Application and Requirements, “Materials” 2021, 14(24), 7849, https://doi.org/10.3390/ma14247849.
  23. Wolański R., Technologia i materiały do produkcji ochron termicznych przed promieniowaniem podczerwonym i mikrofalowym, rozprawa doktorska, Akademia Górniczo-Hutnicza, Wydz. Inżynierii Materiałowej i Ceramiki, Kraków 2008.
  24. Mania R., Godlewska E., Mars K., Morgiel J., Wolański R., Metoda otrzymywania cienkich warstw ceramicznych na tkaninach, Patent PL, (2014), 215960 B1.
  25. Marszałek K., Morgiel J., Wolański R., Warstwy TiN-Si3N4nanoszone tkaniny ochronne techniką magnetronową, „Elektronika” 2014, 55(2), 19–22.
  26. Miedzińska D., Giełżecki J., Mania R., Marszałek K., Wolański R., Experimental study on thermal loads of fabrics used the construction of firefighters' protective clothing covered with reflective composite nanolayers Ti,Si and Ti,Si/(Ti,Si)N, “Materials” 2021, 14, 3493, https://doi.org/10.3390/ma14133493.
  27. Leja E., Precht E., Wolański R., Metody nanoszenia powłok na ochrony osobiste służb ratowniczych, Materiały konferencyjne: Tendencje rozwojowe w technikach ratowniczych i wyposażeniu technicznym, Kraków 2007, 62–70.
  28. Projekt THERMOTEX, nr DOB–BIO 6/04/104/2014 „Nowoczesne technologie nanokompozytowych, refleksyjnych warstw materiałów strażackich ubrań ochronnych, https://thermotex.wat.edu.pl/[dostęp: 20.02.2023].
  29. Nowoczesne technologie nanokompozytowe w ubraniach strażackich, portalmundurowy.pl [dostęp: 20.02.2023].
  30. Idczak E., Stręk T., Badania dynamiczne struktur kompozytowych z rdzeniem o właściwościach auksetycznych, XIV Konferencja Naukowo-Techniczna Techniki Komputerowe w Inżynierii, 2016, https://tki.wat.edu.pl/2016/streszczenia_TKI_pdf/109_Idczak.pdf [dostęp: 20.02.2023].
  31. Kim H., Abdala A.A., Macosko C.W., Graphene/polymernanocomposites, “Macromolecules” 2010, 43, 6515–6530, https://doi.org/10.1021/ma100572e.
  32. Byrne M.T., Gun’ko Y.K., Recent advances in research on carbon nanotube-polymer composites, “Advanced Materials” 2010, 22, 1672–1688, https://doi.org/10.1002/adma.200901545.
  33. Paul D.R., Robeson L.M., Polymer nanotechnology: nanocomposites, “Polymer” 2008, 49, 3187–3204, https://doi.org/10.1016/j.polymer.2008.04.017.
  34. Ray S.S., Okamoto M., Polymer/layered silicate nanocomposites: a review from preparation to processing, “Progress in Polymer Science” 2003, 28, 1539-1641, https://doi.org/10.1016/j.progpolymsci.2003.08.002.
  35. Morgan A.B., Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems, “Polymers for Advanced Technologies” 2006, 17, 206–217, https://doi.org/10.1002/pat.685.
  36. Krzemińska S., Hrynyk R., Pietrowski P., Possible application of nanomaterials in personal protective equipment, “Work Safety: Science and Practice” 2009, 5, 7–9.
  37. Nie Y., Mugaanire I.T., Guo Y., Wang R., Hou K., Zhu M., A hybrid hydrogel/textile composite as flame-resistant dress, “Progress in Natural Science: Materials International” 2021, 31, 33–40, https://doi.org/10.1016/j.pnsc.2020.11.009.
  38. Illeperuma W.R.K., Rothemund P., Suo Z., Vlassak J.J., Fire-Resistant Hydrogel-Fabric Laminates: A Simple Concept That May Save Lives, “ACS Applied Materials & Interfaces” 2016, 8, 2071−2077, https://doi.org/10.1021/acsami.5b10538.
  39. Mell W.E., Lawson R.J., A Heat Transfer Model for Firefighters’ Protective Clothing, “Fire Technology” 2010, 46(4), 833–841, https://doi.org/10.1007/s10694-010-0139-z.
  40. Rezwan A.A., Hossain S., Islam M.A., Study of thermal response of skin symulant material with a protective fabric under a hot air jest, 5th BSME International Conference on Thermal Engineering, Dhaka, 21–23.12.2012.
  41. Bogusławska-Bączek M., Hes L., Effective Water Vapour Permeability of Wet Wool Fabric and Blended Fabrics, “Fibres & Textiles. Eastern Europe” 2013, 21, 1(97), 67–71.
  42. Łapka P, Furmański P., Evaluation of a human skin surface temperature for the protective clothing – Skin system based on the protective clothing–skin imitating material results, “International Journal Of HEAT and Mass Transfer” 2017, 114, 1331–1340, https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.033.
  43. Łapka P., Furmański P., Zastosowanie dwurównaniowego modelu transportu ciepła w skórze do oceny charakterystyk cieplnych ubrań ochronnych, „Przemysł Chemiczny” 2017, 96(2), 343–347, https://doi.org/10.15199/62.2017.2.13.
  44. Wiśniewski T., Furmański P., Łapka P., Problemy związane z oceną ochron osobistych poddanych obciążeniu cieplnemu, w: Problemy monitoringu eksploatacji sprzętu i wyposażenia straży pożarnej, J. Roguski J. (red.), Wydawnictwo CNBOP-PIB, 85-106, https://doi.org/10.17381/2015.2.
  45. Łapka P., Furmański P., Modeling and analysis of the influence of the protective garment movement on the skin temperature and burn degree, “Fire Safety Journal” 2020, 111, 102916, https://doi.org/10.1016/j.firesaf.2019.102916.
  46. Wolański R., Giełżecki J., Brzychczyk B., Badanie ubrań specjalnych przy użyciu manekina Ralph , w: Ziółko M. (red.), Tendencje rozwojowe w zwalczaniu pożarów, Wyd. AGH, Kraków 2017, 65–70.
  47. https://textiles.ncsu.edu/tpacc/heat-and-flame-protection/pyroman [dostęp: 20.02.2023].
  48. Udayraj, Talukdar P., Das A., Alagirusamy R., Heat and mass transfer through thermal protective clothing – A review “International Journal of Thermal Sciences” 2016, 106, 32–56, https://doi.org/10.1016/j.ijthermalsci.2016.03.006.
  49. Krucińska I., Korycki R., Skrzetuska E., Kowalski K., Puszkarz A., Wybrane zagadnienia z metrologii użytkowej odzieży funkcjonalnej, Wyd. Politechniki Łódzkiej, Łódź 2016.
  50. Szułczyńska D., Roguski J., Complex Approach to Thermal Testing of Firefighters’ Protective Clothing, SFT Vol. 58 Issue 2, 2021, pp. 154–16, https://doi.org/10.12845/sft.58.2.2021.9.
  51. ASTM F2370-10 Standard Test Method for Measuring the Evaporative Resistance of Clothing Using a Sweating Manikin, 2015, 6, https://doi.org/10.1520/F2370-10.
  52. Krucińska I., Skrzetuska E., Badania ergonomiczne odzieży ochronnej z zastosowaniem manekina typu NEWTON, w: Problemy monitoringu eksploatacji sprzętu i wyposażenia straży pożarnej, J. Roguski (red.), Wydawnictwo CNBOP-PIB, 107–116, https://doi.org/10.17381/2015.2.
  53. Młynarczyk M., Manekiny termiczne jako narzędzie oraz oporu pary wodnej zestawów odzieży, „Bezpieczeństwo Pracy” 2015, 1/15, 18–20.