Abstract

Aim: The aim of this study is to explore the possibilities of the metaverse environment in the context of simulating the evacuation of people from a building. The research hypothesis assumes the feasibility of applying the metaverse environment to conduct a scenario of simulating the evacuation of people. This environment provides the opportunity for a realistic representation of the building’s topology and the behaviour of people. Additionally, through the interaction among people, it is possible to reflect basic aspects of the human factor related to user interaction in the evacuation process. The article presents the possibilities of evacuating users from a virtual building using two evacuation scenarios and the potential to gather measurement results related to evacuation time in the metaverse environment. Furthermore, simulated evacuation scenarios aim to answer the question of whether conveying information about the dynamically changing situation during the exit of people from a building can accelerate evacuation time.

Introduction: Środowisko metawersum pozwala na realistyczne odzwierciedlenie topologii budynku oraz zachowania się ludzi. Dodatkowo dzięki uwzględnieniu interakcji między osobami umożliwia ukazanie podstawowych aspektów czynnika ludzkiego, które wpływają na samą ewakuację. Artykuł przedstawia propozycje realizacji ewakuacji użytkowników z wirtualnego budynku przy wykorzystaniu dwóch scenariuszy ewakuacyjnych oraz zebrania w środowisku metawersum wyników pomiarowych związanych z czasem ewakuacji. Dodatkowo symulowane scenariusze ewakuacyjne mają dać odpowiedź na pytanie, czy przekazywanie informacji o dynamicznie zmieniającej się sytuacji podczas wyjścia osób z budynku może przyspieszyć czas ewakuacji.

Project and methods: In the study, an empirical research method was employed, involving the implementation of a simulator application operating on the spatial.io platform. Using the unity 3D visualization design tool, a building model was reflected, which was utilized for conducting a virtual evacuation. Business logic was programmed through scripts in the C# programming language, enabling the measurement of the evacuation times of individual users from the building and their movement to the assembly point. To detect the optimal exit route at any given moment, an analysis of the graph was performed based on the Neo4j graph database. After publishing the simulator application, it was possible to simulate the evacuation of people from the building in a virtual environment and gather measurement results related to evacuation times.

Results: The proposed research method provided the opportunity to gather evacuation time results from people using two evacuation scenarios. In evacuation scenarios where users were provided with information about dynamically changing situations on the evacuation route (e.g. the emergence of impassable paths), the times for people to exit the building in simulated evacuations were shorter. The design of a virtual evacuation simulator application demonstrated the utility of the metaverse environment in training individuals on the principles of safe building evacuation and showcased the potential for collecting data on people’s behaviour during evacuations.

Conclusions: Based on the obtained experimental results and the analysis of global trends presented in the literature, which demonstrate the use of VR simulators in building evacuation simulations, it can be concluded that the presented simulation method may prove useful both in the field of education and in gathering fundamental results or simulating evacuation scenarios.

Keywords: evacuation simulator, metaverse, unity 3d, spatial.io, graph analysis

Type of article: original scientific article

Bibliography:

  1. Rodriguez H., Quarantelli E.L., Dynes R., Handbook of Disaster Research, Springer-Verlag, New York 2007.
  2. Roguski J., Chmielewski M., Wantoch-Rekowski R., Zastosowanie symulacji wirtualnej do szkolenia w zakresie bezpieczeństwa użytkowania obiektu na przykładzie terminalu lotniczego, BiTP Vol. 43 Issue 3, 2016, pp. 173–184, https://doi.org/10.12845/bitp.43.3.2016.15.
  3. Lorusso P., De Iuliis M., Marasco S., Domaneschi M., Cimellaro G.P., Villa V., Fire Emergency Evacuation from a School Building Using an Evolutionary Virtual Reality Platform, “Buildings” 2022, 12, 223, https://doi.org/10.3390/buildings120202.
  4. Xi M., Smith S.P., Exploring the Reuse of Fire Evacuation Behaviour in Virtual Environments, in: Proceedings of the 11th Australasian Conference on Interactive Entertainment (IE 2015), Sydney, Australia, 27–30 January 2015.
  5. Guo Y., Zhu J., Wang Y., Chai J., Li W., Fu L., Xu B., Gong Y., A Virtual Reality Simulation Method for Crowd Evacuation in a Multiexit Indoor Fire Environment, “ISPRS Int. J. Geo-Inf.” 2020, 9(12), 750, https://doi.org/10.3390/ijgi9120750.
  6. Xi M., Smith S.P., Simulating cooperative fire evacuation training in a virtual environment using gaming technology, “IEEE Virtual Reality (VR)” 2014, 139–140, https://doi.org/10.1109/VR.2014.6802090.
  7. Martin V.B.S. et al., Virtual Reality Simulations for Hospital Fire Evacuation: A Systematic Literature Review, 22nd Symposium on Virtual and Augmented Reality (SVR), Porto de Galinhas, Brazil 2020, 313–320, https://doi.org/ 10.1109/SVR51698.2020.00054.
  8. Hani S. et al., The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions, https://doi.org/10.48550/arXiv.2304.09240.
  9. Facebook Horisont Worksroom, https://forwork.meta.com/, [dostęp: 1.12.2023].
  10. Decentraland, https://decentraland.org, [dostęp: 1.12.2023].
  11. spatial.io, http://spatial.io, [dostęp: 1.12.2023].
  12. Palka D., Sobota M., Buchwald P., 3D Object Digitization Devices in Manufacturing Engineering Applications and Services, “Multidisciplinary Aspects of Production Engineering” 2020, 3.1, 450–463, https://doi.org/10.2478/mape-2020-0038.