Abstract
Aim: The purpose of the research was to find an appropriate extinguishing agent and develop an effective method of extinguishing the easily flammable and difficult to extinguish burning organometallic catalyst. The issue arose at the one of the Warsaw universities where the catalyst in question was developed. Without the description of extinguishing method, the developed catalyst could not be approved for industrial production and use. Traditional extinguishing techniques were not effective, thus the problem was referred to the appropriate scientific and research institute with the request to solve it and identify an effective method of quenching the fire. The author described the methods applied in the research experiment and their net result – an effective extinguishing technique.
Methodology: Testing experiments were carried out by the way of extinguishing provided by the university catalyst. The following agents were used to the attempts to extinguish fires: fire extinguishing powders – “ABC”, “BC”, “M” and carbon dioxide. In the course of the experiment unconventional extinguishing materials such as sand and diatomite were also applied. For obvious reasons, firefighting foams and water streams were not used, since water causes spontaneous self-ignition of the catalyst. The experiment also investigated the use of halon gases for congnitive purposes.
Results: In the course of the conducted research it was established that traditional extinguishing agents do not suppress the fire of the catalyst in question. Carbon dioxide smothers the flame but does not extinguish the test fire completely. The sand does not extinguish and the burning catalyst burns out, while dry powder and halon gases only strengthen the flames.
Conclusions: It was found that diatomite is an effective extinguishing agent. It absorbed the burning catalyst and permanently put out the test fire. Other extinguishing agents did not supress the fires of this type of flammable liquids. This is another way to extinguish fires, other than inhibition, cooling the scorch zone and burning materials, dilution of the combustion zone, extinguishing with an inert gas, water vapour, isolation of flammable materials from the combustion zone with for example foam and extinguishing with the help of acoustic waves having specific technical parameters.
Keywords: extinguishing of flames, suppression of combustion processes, inhibition, porous materials
Type of article: short scientific report