Abstract

Aim: The main aim of the following paper is to present results from experiments regarding the influence of temperature on selected explosion parameters such as explosion pressure Pex and maximum explosion pressure Pmax. Morover literature was reviewed on the parameters mentioned above along with two additional parameters, ie. rate of the explosion pressure rise (dp/dt)ex and maximum rate of explosion pressure rise (dp/dt)max.

Project and methods: The tests were performed using an apparatus, which was build according to the guidelines defined in PN-EN 15967. The test vessel was a 20 L spherical chamber equipped with additional systems for various purposes, including: fuel-air mixture preparation system, data acquisition system, security system and temperature stabilization system. Ignition source was placed in geometric center of the vessel and carried out by a current passing through a section of a straight fuse wire that was placed between two metal rods. The released energy was to be between 10 to 20 J, because this energy range does not substantially affect the value of the determined parameters. The mixtures were prepared according to the method of partial pressures explained in the paper. Initial pressure of flammable mixtures before applying the ignition source was ambient.

Results: The paper contains the results of experiments regarding the maximum explosion pressure Pmax versus temperature and pressure explosion Pex versus temperature and fuel-air equivalence ratio (Φ), which is reciprocal of air-fuel equivalence ratio (λ). Tested substances were flammable liquids: n-butanol, sec-butanol and isooctane. Measurements were performed for their single-constituent mixtures with air and for their blends (binary mixtures) also with air. The collected results were preliminary assessed and analyzed. Each test was repeated from 3 to 5 times.

Conclusions: The obtained experiment results indicate a number of common features including the following: decrease of Pmax value together with the increase of temperature; the presence of Pmax value for the mixtures with a concentration close to the stoichiometric one of fuel-rich mixtures (1 < Φ < 1,5); convergance of Pex trends towards the lower flammability limit (Φ < 1); the presence of a wider range of explosiveness, but a lower number of parameters of explosion pressure of fuel-rich mixtures (Φ > 1); no symmetry between the trend of mixtures fuel-rich mixtures (Φ> 1) and fuel-lean mixtures (Φ <1).

Keywords: explosion parameters, maximum pressure of explosion, maximum rate of explosion pressure rise

Type of article: original scientific article