Abstract
Aim: Determine the parameter in order to increase the effectiveness of fire extinguishing of CO2 and N2, as well as the power of the shock wave when they are all applied to extinguish a diffusion flame of n-heptane С7N16. Determine the properties of the proposed combined method of extinguishing the diffusion flame of n-heptane in a special test chamber.
Methodology: In order to determine the potential of the method of extinguishing the diffusion flame of n-heptane using, at the same time, CO2 and N2 and a shock wave, which occurs during the explosion of a pyrotechnic charge, a test station was prepared. It was a chamber of a volume of 0.5 m3 where a shock wave generator was located, and a crucible with n-heptane was placed at a distance of 1.75 m from it. Gas was delivered through a gasometer. The pressure at the front of the shock wave was measured using a pressure sensor and a temperature BMP180 for Arduino controllers, where the work is based on the piezoresistive effect. Visualization of the process of using, at the same time, CO2 and N2 and a shock wave was performed using Nikkon 1 j4 camera with the ability to record images at the speed of 1200 frames per second.
Results: In this paper experimentally justified was the fact that combined action of a shock wave and CO2 or N2 on the n-heptane flame, in the chamber at a distance of 2 meters leads to its supression by bursting and defragmentation. Moreover it was experimentally proven that the extinguishing effect of the shock wave with the front pressure of 125 Pa ensures extinguishing with CO2 at a concentration level of 20.3% and N2 at 30.2%. Increasing the power of the shock wave up to 180 Pa allows to reduce the extinguishing concentration of CO2 to 8.2% and of N2 to 15.4%. Based in the analysis of a series of shots, it can be observed that the extinguishing time in comparison to extinguishing method using only a shock wave with the front pressure of approximately 215 Pa is three times shorter.
Conclusions: The possibility of a significant increase in the efficiency of extinguishing using CO2 and N2 gases and a shock wave based on the example of a test n-heptane fire in a chamber at a distance of 2 meters was justified and experimentally demonstrated in this paper. Moreover, it has been proven experimentally that during extinguishing a n-heptane diffusion flame using a shock wave of 180 Pa, the necessary concentration of CO2 is reduced by two and a half, and in case of N2 – two times. The experiment confirmed that as a result of simultaneous use of a shock wave and extinguishing gas extinguishing, the time to extinguish the n-heptane diffusion flame significantly shortened. In the case of the CO2 the time required to extinguish the flame is 7 times shorter and in case of N2 it is up to 4.2 times faster as compared to extinguishing the flame using only a shock wave, which takes 350 milliseconds. The features of the proposed combined method of extinguishing the diffusion flame in a special chamber were determined using an experimental method. This includes, in particular, the fact that the start time of defragmentation is greatly reduced and the flame becomes less fragmented. As a result, the extinguishing process takes less time.
Keywords: fire, shock wave, gas fire extinguishing, fire extinguishing concentration, diffusion flame
Type of article: original scientific article