Abstract

Aim: Determine the effect of the number and distribution of thermal couples on the cool-touch surface of a steel plate with a tested water film on the accuracy of designating thermophysical and fire protection characteristics of this coating.

Methodology: In order to determine fire resistance class of the steel plates with fire protection water film, experimental methods were used to observe the reaction of the samples during heating, regulated by the requirements of B.V. 1.1.-4-98 and NPBV 1.1–29:2010. Mathematical and computer modelling of processes of unsteady heat transfer in the system “steel plate – intumescent coating” were used. Thermal properties of tested intumescent coating were determined.

Results: Fire tests of two steel plates coated with a water film, which swells during heating, were carried out under standard temperature conditions occuring during a fire. The dependences of the effective heat conductivity coefficient of intumescent coating were obtained during its changes at different points of the steel plate and in various combinations (according to indications of one, two and three thermal couples).

Conclusions: On the basis of the conducted fire tests of a steel plate (5 mm in thickness), coated on one side by intumescent water-based composition, of 0,52 mm in thickness, consisting of heating the plate in an ovenat temperatures which are characteristic for fires, the effect of the number and location of thermal couples on the accuracy of thermophysical properties of intumescent coating was tested. It was determined that the number and location of thermal couples on the cool-touch surface of a plate affect the accuracy of determining thermophysical properties of intumescent coating. The highest accuracy in determining thermophysical properties of intumescent coating is observed while using data from temperature changes according to the indications of the three thermal couples (criterion of standard deviation was 5.8°C). Increasing the number of thermal couples, placed on the unheated surface of steel plate did not result in the decrease of the deviation criterion.

Keywords: thermal couple, fire-retardant coating, thermophysical properties, the property of fireproof capability, fire tests

Type of article: original scientific article