Abstract

Aim: The main aim of the study was to present the results of a survey of a variety of fire-preventive equipment in the Kraków Fast Tram tunnel (KST). Experimental studies involved modern 3D surveying techniques, particularly 3D laser scanning and infrared thermography. In order to facilitate the use of the generated findings, all data have been made available remotely on a web portal.

Methodology: Survey measurements were taken using a Faro Focus X130 3D laser scanner. The scanner simultaneously performs vertical and horizontal angle measurements and calculates the distance to a given point. In addition, each point can have a real colour value in RGB space. It is also possible to present point clouds together with the intensity values in grayscale. The collections of points registered at individual vantage points result in a cloud of points representing the geometry of the object. Additional thermal measurements were carried out as part of the study, using a FLIR S60 camera. Finally, thermal images were calibrated and merged with the point cloud obtained from the laser scanning.

Results: The results confirmed that laser scanning, together with thermal, images allows us to obtain detailed spatial information about the surveyed structure. Among the surveyed elements of the structure’s equipment the following can be identified: cable trays, lighting, switchboards, ventilation ducts, and fire-protection systems. The latter include a smoke protection system, together with valves and channels.

Conclusions: The results demonstrate the usefulness of combining 3D laser scanning measurements and infrared thermography. This is especially important in the measurement of objects responsible for security and fire safety. Spatial visualisation facilitates and streamlines the acquisition of data and their further use. The primary advantage of combining these two techniques is the acquiring of complete geometrical information on the object and the corresponding devices. Another valuable addition is infrared thermography. It allows the identifying of devices or items in a single system with varying temperatures.

Keywords: fire protection systems, ventilation systems, tunnel, laser scanning, infrared thermography