Abstract
Aim: This article presents an identification and analysis of the hazards associated with the operation of lithium-ion technology, the range of applications, an overview of hazardous incidents domestically and also internationally, the brief history of lithium-ion batteries, as well as recommendations on the use and storage of batteries published not only by domestic but also foreign fire and occupational safety organizations.
Introduction: The increased mobility of people doing their work with computers has created the need to produce portable devices that require concentrating as much energy as possible in a limited enclosure volume. These devices accompany the user in everyday life, during travel and also in a variety of work. In order to meet these criteria, it was necessary to solve these problems, first of all, the problem of power supply, which would allow to use the electricity stored by them in a long-lasting but also very efficient way. However, modern solutions bring a number of new risks that are not obvious at first glance and require detailed analysis.
Project and methods: Based on a critical analysis of the literature, the authors presented the advantages and disadvantages of cells used in smartphones, laptops, portable power tools used in households across the globe and even electric cars. The development of lithium-ion battery technology and the expansion of their range of applications makes it necessary to develop solutions to enhance safety during their use, together with procedures to prevent possible explosions and fires, allowing effective life and health protection of users, as well as safeguarding all property and the environment.
Methodology: Opierając się na krytycznej analizie literatury, autorzy przedstawili zalety i wady ogniw wykorzystywanych w smartfonach, laptopach, przenośnych elektronarzędziach, a nawet samochodach elektrycznych. Rozwój technologii produkcji akumulatorów litowo-jonowych oraz rozszerzenie zakresu ich zastosowania sprawia, że konieczne jest opracowanie rozwiązań zwiększających bezpieczeństwo podczas ich użytkowania oraz procedur zapobiegania ewentualnym wybuchom i pożarom, pozwalających na skuteczną ochronę życia oraz zdrowia użytkowników, a także zabezpieczenie wszelkiego mienia i środowiska.
Conclusions: In order to prevent fires spreading, it is necessary to understand the mechanisms that lead to ignition and possible explosions of cells and batteries. From the point of view of preventing such failures and fires, it is important to recognize the response of burning batteries to various types of fire extinguishing agents and preventive measures. Continued research in this area can contribute to the evolution of more sophisticated and advanced safety technologies and the development of regulatory standards that in the future will guarantee the effective control of lithium-ion battery fires directly linked to their storage, use at high quantities, and the correct storage of waste (in the form of damaged and depleted batteries).
Keywords: lithium-ion batteries, fire hazard, environmental protection, environmental pollution, toxic products of combustion
Type of article: review article
Bibliography:
- Castelvecchi D., Stoye E., World-changing batteries win Nobel, „Nature” 2019, 574, 7778, 308–308, https://doi.org/10.1038/d41586-019-02965-y.
- Igras S., Bez energii ani rusz, https://www.computerworld.pl/news/Bez-energii-ani-rusz,401574.html, [dostęp: 02.11.2023].
- E-magazyny.pl, Baza wiedzy, Baterie litowo-jonowe, https://e-magazyny.pl/baza-wiedzy/baterie-litowo-jonowe/?fbclid=IwAR3fWUw1OX9AQNM-OLOhPkh3O2Nc6xeZpKGAEOk3eyH1DYUSda-UqFNc9FI, [dostęp: 02.11.2023].
- Baraniak J., Pawlicki B., Wincenciak S., Elektromobilność: szanse i zagrożenia dla sieci dystrybucyjnej, „Przegląd Elektrotechniczny” 2020, 96.
- Aghabali I., Bauman J., Kollmeyer P.J., Wang Y., Bilgin B., Emadi A., 800-V Electric Vehicle Powertrains: Review and Analysis of Benefits, Challenges, and Future Trends, „IEEE Transactions on Transportation Electrification” 2021, 7(3), pp. 927–948, https://doi.org/10.1109/TTE.2020.3044938.
- Duh Y.-S., Sun Y., Lin X., Zheng J., Wang M., Wang Y., Lin X. i in., Characterization on thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicles: A review, „Journal of Energy Storage” 2021, 41, 102888, https://doi.org/10.1016/j.est.2021.102888.
- Mrozik W., Rajaeifar M.A., Heidrich O., Christensen P., Environmental impacts, pollution sources and pathways of spent lithium-ion batteries, „Energy & Environmental Science” 2021, 14, no. 12, 6099-6121, https://doi.org/10.1039/D1EE00691F.
- PZPM, PSPA, Licznik elektromobilności, https://www.pzpm.org.pl/pl/content/download/18408/231342/file/Licznik_Elektromobilnosci_PZPM_PSPA_informacja_prasowa_2024-02-23.pdf, [dostęp: 02.11.2023].
- https://www.ev-volumes.com/country/total-world-plug-in--vehicle-volumes/, [dostęp: 02.11.2023].
- https://www.pzpm.org.pl/pl/Aktualnosci/Licznikelektromobilnosci-Marzec-2023?fbclid=IwAR0tXX0Al-TJPcR-24QM0plD7NbJoxE57TFh_dzhqqfyMKrJCJbfVW06bxwA, [dostęp: 02.11.2023]..
- Olszewski D., Laptop, a może komputer stacjonarny? Jak wygląda rynek?, https://www.computerworld.pl/news/ Laptop-a-moze-komputer-stacjonarny-Jak-wyglada-rynek, 445926.html, [dostęp: 02.11.2023].
- Polski rynek smartfonów trzyma się mocno na tle osłabionego regionu, https://www.parkiet.com/handel-i-konsumpcja/ art36703791-polski-rynek-smartfonow-trzyma-sie- -mocno-na-tle-oslabionego-regionu, [dostęp: 02.11.2023].
- Pesaran A., Battery thermal management in EV and HEVs: issues and solutions, „Battery Man” 2001, 43(5), 34–49.
- Bandhauer T.M., Garimella S., Fuller T.F., A critical review of thermal issues in lithium-ion batteries, „Journal of the electrochemical society” 2011, 158(3), R1, https://doi.org/10.1149/1.3515880.
- Huo H., Xing Y., Pecht M., Züger B.J., Khare N., Vezzini A., Safety requirements for transportation of lithium batteries, „Energies” 2017, 10(6), 793, https://doi.org/10.3390/en10060793.
- Li W., Crompton K.R., Hacker C., Ostanek J.K., Comparison of current interrupt device and vent design for 18650 format lithium-ion battery caps, „Journal of Energy Storage” 2020, 32, 101890, https://doi.org/10.1016/j.est.2020.101890.
- Xu B., Kong L., Wen G., Pecht M.G., Protection devices in commercial 18650 lithium-ion batteries, „IEEE Access” 2021, 9, 66687–66695, https://doi.org/10.1109/ACCESS.2021.3075972.
- Ouyang D., Weng J., Chen M., Wang J., What a role does the safety vent play in the safety of 18650-size lithium- -ion batteries?, „Process Safety and Environmental Protection” 2022, 159, 433–441, https://doi.org/10.1016/j.psep.2022.01.017.
- Liu J., Duan Q., Ma M., Zhao C., Sun J., Wang Q., Aging mechanisms and thermal stability of aged commercial 18650 lithium-ion battery induced by slight overcharging cycling, „Journal of power sources” 2020, 445, 227263, https://doi.org/10.1016/j.jpowsour.2019.227263.
- Robinson J.B., Darr J.A., Eastwood D.S., Hinds G., Lee P.D., Shearing P.R., Taiwo O.O., Brett D.JL., Non-uniform temperature distribution in Li-ion batteries during discharge–A combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach, „Journal of Power Sources” 2014, 252, 51–57, https://doi.org/10.1016/j.jpowsour.2013.11.059.
- Kuipers M., Meier S., Hust F., Sauer D.U., An in-depth view into the Tesla model S module. Part two: Module characterization and comparison to other state of the art EV battery systems, Helmholtz-Institut Münster Ionenleiter für Energiespeicher, No. FZJ-2017-02840, Jülich 2017.
- Sahraei E., Campbell J., Wierzbicki T., Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions, „Journal of Power Sources” 2012, 220, 360–372, https://doi.org/10.1016/j.jpowsour.2012.07.057.
- Balakrishnan P.G., Ramesh R., Prem Kumar T., Safety mechanisms in lithium-ion batteries, „Journal of power sources” 2006, 155(2), 401–414, https://doi.org/10.1016/j.jpowsour.2005.12.002.
- Larsson F., Andersson P., Blomqvist P., Mellander B.-E., Toxic fluoride gas emissions from lithium-ion battery fires, „Scientific reports” 2017, 7(1), 10018, https://doi.org/10.1038/s41598-017-09784-z.
- Lesiak P., Pietrzela D., Mortka P., Methods used to extinguish fires in electric vehicles, “Safety & Fire Technology” 2021, 58, 38–57, https://doi.org/10.12845/sft.58.2.2021.3.
- Zhao J., Xue F., Fu Y., Cheng Y., Yang H., Lu S., A comparative study on the thermal runaway inhibition of 18650 lithium-ion batteries by different fire extinguishing agents, „iScience” 2021, 24(8), https://doi.org/10.1016/j.isci.2021.102854.
- Nedjalkov A., Meyer J., Köhring M., Doering A., Angelmahr M., Dahle S., Sander A., Fischer A., Schade W., Toxic gas emissions from damaged lithium-ion batteries – analysis and safety enhancement solution, „Batteries” 2016, 2(1), 5, https://doi.org/10.3390/batteries2010005.
- Mrozik W., Rajaeifar M.A., Heidrich O., Christensen P., Environmental impacts, pollution sources and pathways of spent lithium-ion batteries, „Energy & Environmental Science” 2021, 14, no. 12, 6099–6121, https://doi.org/10.1039/D1EE00691F.
- Lisbona D., Snee T., A review of hazards associated with primary lithium and lithium-ion batteries, „Process Safety and Environmental Protection” 2011, 89, no. 6, 434–442, https://doi.org/10.1016/j.psep.2011.06.022.
- Furfaro D., Marino J., Raging fire near LIRR tracks likely to make commute hell, „New York Post” 2018, 16.03, https://nypost.com/2018/03/16/raging-fire-near-lirr-tracks-likely--to-make-commute-hell/, [dostęp: 02.11.2023].
- ERI, The 5 Biggest Lithium Ion Battery Fires To Date, 29.03.2022, https://eridirect.com/blog/2022/03/the-5-biggest-lithium-ion-battery-fires-to-date/ [dostęp: 02.11.2023].
- CNET, Samsung phone catches fire and destroys car, says Detroit woman, 11.06.2022, https://www.cnet.com/news/ samsung-phone-catches-fire-destroys-car-says-detroit-woman/ [dostęp: 02.11.2023].
- Beausoleil S., Lithium batteries causes train car explosion in NE Houston, https://www.click2houston.com/news/train- catches-fire-in-ne-houston, [dostęp: 02.11.2023].
- Vandell P., Injured firefighters identified from substation battery explosion in Surprise, https://www.azfamily.com/ news/firefighters-hospitalized-after-power-substation-battery- explosion-in-surprise/article_ c28a7f1e-631c-11e9-9bf1-bfa00f273619.html, [dostęp: 02.11.2023].
- Wallroth E., Fullt utvecklad brand i Vällingby – tre radhus brinner ner, https://www.svt.se/nyheter/lokalt/stockholm/ brand-i-radhus-i-vallingby-polisen-evakuerar, [dostęp: 02.11.2023].
- Sweden Posts English, Heavy fire in terraced house – started in electric car, https://sweden.postsen.com/local/115091/ Heavy-fire-in-terraced-house-%E2%80%93-started-in-electric- car.html, [dostęp: 02.11.2023].
- NFPA 1: Fire Code, https://www.nfpa.org/codes-and-standards/ all-codes-and-standards/list-of-codes-and-standards/ detail?code=1, [dostęp: 02.11.2023].
- NFPA Lithium-Ion Battery Safety Information and Resources, https://www.nfpa.org/-/media/Files/Public-Education/ Resources/Safety-tip-sheets/LithiumIonBatterySafety. ashx, [dostęp: 02.11.2023].
- People, Four Hospitalized After Battery Pack Caught Fire on United Airlines Flight, 08.02.2023, https://people.com/travel/four-hospitalized-after-battery-pack-caught-fire-on--united-airlines-flight/, [dostęp: 02.11.2023].
- NFPA 484: Standard for Combustible Metals, https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=484, [dostęp:02.1 1.2023].
- OSHA, Preventing Fire and/or Explosion Injury from Small and Wearable Lithium Battery Powered Devices, https://www.osha.gov/sites/default/files/publications/shib011819.pdf, [dostęp: 02.11.2023].
- OSHA, Standard Interpretations – Applicability of the HCS to Lithium-Ion Batteries, https://www.osha.gov/laws-regs/ standardinterpretations/2022-12-01, [dostęp: 02.11.2023].
- KG PSP, Standardowe zasady postępowania podczas zdarzeń z samochodami osobowymi z napędem elektrycznym, https://www.gov.pl/web/kgpsp/zatwierdzono-standardowe- -zasady-postepowania-podczas-zdarzen-z-samochodami-z- -napedem-elektrycznym-oraz-hybrydowym-material-opracowany- przez-zespol-zadaniowy-komendanta-glownego-psp, [dostęp: 02.11.2023].