Abstract

Aim: The purpose of this study is to identify cyber threats associated with systems integrating fire protection devices (SIUP). The analysis includes conducting a comprehensive assessment of potential attack sites (vulnerabilities) and recommendations for building designers and managers to minimise adverse actions.

Project and methods: A detailed review of the literature and cybersecurity standards applicable to fire protection systems, such as NFPA 72, was conducted, from which key points that are vulnerable elements and represent attack surfaces were identified. The Cybersecurity for Fire Protection Systems report from a workshop held by the Research Foundation in 2021 was analysed.

Results: Analysis of the collected research material showed that the key points of vulnerability are human factors, software, hardware, wired and wireless connections and system security. In addition, internal threats, i.e. lack of training, malicious action by employees, invasion by unknown software and too much access by security personnel to system components, are also important issues. It has been found that cybercriminals can use various techniques: denial-of- service (DoS) attacks, man-in-the-middle attacks, remote code execution and social engineering, to disrupt systems. To prevent this and minimise the risk of attacks, it is recommended that security configuration guides should be issued, that specialists should be employed and that strategies should be created to increase the resilience of systems integrating fire appliances to cyber attacks. Currently, Polish regulations are mainly based on the technical aspects of SIUP operation, i.e. the installation and operation of alarm systems. There is a lack of relevant legal regulations that directly address the issue of the network and cyber security of these systems.

Conclusions: It is necessary to urgently develop and implement comprehensive legal regulations that would take into account the specificity of the cyber security of fire protection systems in Poland. Future research should also focus on the human factor aspects of SIUP systems security.

Keywords: safety, cyber security, fire protection, system integrating fire protection devices, SIUP, fire protection device

Type of article: original scientific article

Bibliography:

  1. Stępkowski R., Integracja systemów bezpieczeństwa w budynkach wysokich i wysokościowych. Wpływ na ochronę przeciwpożarową obiektu, https://ela.pl/wp-content/uploads/2019/09/Ryszard-St%C4%99pkowski-wyk%C5%82ad-2.pdf [dostęp: 31.10.2024].
  2. Kunecki K., Zintegrowany system bezpieczeństwa pożarowego w: Materiały pokonferencyjne z Ogólnopolskich Dni Ochrony Przeciwpożarowej w dniach 9–10.10.2024.
  3. Wytyczne projektowania, instalowania, uruchamiania, obsługi i konserwacji systemów integrujących urządzenia przeciwpożarowe CNBOP-PIB W-0007:2024 (wyd. 2 rozszerzone, listopad 2024) SITP WP-05:2024.
  4. Wytyczne projektowania pomieszczenia i miejsca obsługi urządzeń przeciwpożarowych w budynkach. Lokalizacja, warunki wykonania, wyposażenie CNBOP-PIB W-0001:2014 wydanie 3 rozszerzone, grudzień 2023.
  5. NFPA 4 – Standard for Integrated Fire Protection and Life Safety System Testing.
  6. PN-EN 54-13: Systemy sygnalizacji pożarowej − Część 13: Ocena kompatybilności możliwości przyłączenia podzespołów systemu.
  7. Ustawa z dnia 24 sierpnia 1991 r. o ochronie przeciwpożarowej (Dz.U. 2024, poz. 275, 1222).
  8. Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 7 czerwca 2010 r. w sprawie ochrony przeciwpożarowej budynków, innych obiektów budowlanych i terenów (Dz.U. 2010 Nr 109, poz. 719).
  9. Zapała R., System integrujący urządzenia przeciwpożarowe w systemach kontroli rozprzestrzeniania dymu i ciepła. Praktyczne aspekty sterowania, zasilania i integracji, „Rynek Instalacyjny” 2020, 5, https://www.rynekinstalacyjny.pl/artykul/systemy-poz/43379,system-integrujacy-urzadzenia-przeciwpozarowe-w-systemach-kontroli-rozprzestrzeniania-dymu-i-ciepla-praktyczne-aspekty-sterowania-zasilania-i-integracji [dostęp: 30.10.2024].
  10. Hutchison V., Brackett J., Cybersecurity and fire protection, May 13, 2021, PE, SASHE, CHFM, https://www.hfmmagazine.com/articles/4177-cybersecurity-and-fire-protection [dostęp: 30.10.2024].
  11. NFPA 72 – National Fire Alarm and Signaling Code.
  12. Chevreaux J., Owen P., Donaldson K., Bright K., Largen A., Meiselman D., Kirsanova K., Borinski M., Uribe A., Cybersecurity for Fire Protection Systems, Final Report, M.C. Dean, Inc. Tysons, VA, USA, JesResearch fundation, REsearch for the NFPA Mission, September 2021.
  13. Sinopoli J., Chapter 9 – Fire Alarm and Mass Notification Systems, in: Smart Buildings Systems for Architects, Owners and Builders, Elsevier, Oxford 2010.
  14. Shulga T., Nikulina Yu., Decision Support System for Fire Alarm Design, w: Society 5.0: Human-Centered Society Challenges and Solutions, A. Kravets, A. Alexander, M.Sh. Bolshakov, M. Shcherbakov, Springer International Publishing, 2022, 407–416, https://doi.org/10.1007/978-3-030-95112-2_33.
  15. Behera R.P., Murali N., Satya Murty S.A.V, Development of Tele-Alarm and Fire Protection system using Remote Terminal Unit for Nuclear Power Plant, w: International Conference on Robotics, Automation, Control and Embedded Systems (RACE) 2015, https://doi.org/10.1109/RACE.2015.7097289.
  16. Dasig D.D., Design and in Prototype Implementation of Fire Detection and Intelligent Alarm System, Proc. of the Intl. Conf. on Advances in Computing, Control and Networking – ACCN, Institute of Research Engineers and Doctors, USA 2015.
  17. NIST 800-82 – Guide to Industrial Control Systems (ICS) Security.
  18. UL 2900-2-3 – Standard for Software Cybersecurity for Network-Connectable Products – Life Safety and Signaling Systems.
  19. D'Ambrosio N., Perrone G., Romano S.P., Including insider threats into risk management through Bayesian threat graph networks, Computers & Security” 2023, 103410, https://doi.org/10.1016/j.cose.2023.103410.
  20. Protecting Against Terrorism Third Edition, Centre for the Protection of National Infrastructure.
  21. Azarenko O., Shevchenko R., Diviziniuk M., Shevchenko O., Honcharenko Yu., Methods of assessing terrorist threats to strategic facilities of the state, Critical Infrastructure Security and Industrial Control Systems, 2023.
  22. Theodora L., Critical Infrastructure Security and Industrial Control Systems, Social Science Research Network, 2010, https://dx.doi.org/10.2139/ssrn.1692827.
  23. Shvetsov A.V., Shvetsov M.A., Gromov V.N., Balalaev A.S., Shvetsova S.V., Sharov V.A., Kozyrev V. A., Trends of Modern Terrorism in the Metro Systems of the World, “European Journal for Security Research”, 2018, 1, 149–156, https://doi.org/10.1007/s41125-018-0037-9.
  24. Kovacs E., Vulnerabilities Allow Hackers to Access Honeywell Fire Alarm Systems, February 24, 2020 https://www.securityweek.com/vulnerabilities-allow-hackers-access--honeywell-fire-alarm-systems/ [dostęp: 30.10.2024].
  25. PN-EN 61508: Bezpieczeństwo funkcjonalne układów sterowania.
  26. Dyrektywa Parlamentu Europejskiego i Rady (UE) 2022/2555 w sprawie środków na rzecz wysokiego wspólnego poziomu cyberbezpieczeństwa na terytorium Unii, zmieniająca rozporządzenie (UE) nr 910/2014 i dyrektywę (UE) 2018/1972 oraz uchylająca dyrektywę (UE) 2016/1148.