Abstract

Aim: This paper examines the responses of load-bearing steel frames to direct fire exposure and the associated impact of the monotonically increasing temperature of its components. For comparative purposes, the authors analysed in detail specific frames with beam-to-column joints differing in rigidity. Depending on whether there are stiffening ribs present and, if so, on where they are located, the fire resistance of the considered structural component is determined by the actual damage patterns. These can be manifested as local instability in the column web or as damage to the column flange or beam flange. The design of the joint is also one of the factors determining the redistribution of internal forces generated in the frame components when subjected to fire conditions.

Project and methods: The authors identified, discussed and compared the dependencies determining the relationships between the temperature of the frame components, and the bending moments and axial forces induced in these components during a fire. These relationships were identified through a detailed analysis of a numerical example, in which the fire behaviour of three similar steel frames, differing in terms of their beam-to-column joint rigidity, was examined. In the first analysed case, a joint without any ribbing was examined, in the second case, a joint with horizontal ribs, and in the third case, a joint with horizontal and diagonal ribs. The relationships listed above are accompanied by corresponding the relationships specifying the dependencies between steel temperature and frame beam deflection. In addition, the analysis considers flexible supports with different rigidity to model the resistance of the columns to horizontal joint displacement.

Results: It has been shown that the analysed types of the examined frame exhibit substantial differences in their predicted structural responses if the joints used in them and exposed to fire differ in rigidity. The identification of these differences and their qualitative and quantitative description constitute the main objective of this work.

Conclusions: Frame behaviour under fire conditions is determined not only by frame geometry and the size of its structural members, designed to be able to fully bear their respective loads, but also, to the same extent, by the susceptibility to deformation of the bearing structure itself and the joints connecting the component structural members.

Keywords: steel frame, fire, temperature, joint susceptibility, displacement, redistribution of internal forces

Type of article: original scientific article