Abstract

Aim: The article presents information on the issue of CO2 emission (called greenhouse gas) from the energy sector, along with tools enabling the determination of CO2 emissivity used to manage this process and the directions of actions taken to minimize the negative impact on the climate.

Introduction: CO2 is one of the substances essential for the functioning of life on Earth. On one hand, it is an important element of the carbon cycle in nature, being the basis for the synthesis of carbohydrates. On the other hand, it belongs to the group of greenhouse gases responsible for the climate change – and for this reason, it must be subject to constant control. Due to this fact, appropriate measures are taken, including changes in law, in the scope of emission, as well as the introduction of modern technological solutions aimed at monitoring and reducing CO2 emission. Activities undertaken in the area of energy, the branch of the economy generating the largest amounts of anthropogenic CO2, accounting for 41% of global emissions of this gas, are of significant importance [1]. The developed tools, allowing to calculate the amount of carbon dioxide emissions, expressed by emission indicators, allow for the assessment of the activities undertaken both in terms of ecology and economy.

Methodology: The article was prepared on the basis of a review of selected literature, and reports as well as applicable legal requirements in the field of the discussed subject.

Conclusions: The implemented measures aimed at the application of emission indicators in the area of energy allowed for the definition of forecasts and the determination of the directions of activities, in order to reduce the emission of CO2. The gradual implementation of new technological solutions, enabling energy production based on biomass or other renewable energy sources, allows for the reduction of the emission of this gas. However, given the constantly increasing energy demand, it is a slow process which is not sufficient to stop the observed changes. Therefore, it is necessary to take further steps, to develop more reliable and homogeneous tools that would make it possible to compare the results regardless of the place of emission or the type of fuel used. However, it should be noted that it is necessary to cover all stages of the construction and operation of the energy sector with the measures mentioned above, which generate CO2 emission, and not only the combustion process itself.

Keywords: emissivity, CO2, power engineering, climate change

Type of article: review article

Bibliography:

  1. Foster V., Bedrosyan D., Understanding CO2 Emissions from the Global Energy Sector, Live Wire. A Knowledge Note Series for the Energy Practice, The World Bank, 85126, 5, 2014.
  2. Le Quéré C., Andrew R. M., Friedlingstein P., Sitch S., Hauck J., Pongratz J., Pickers P.A., Korsbakken J.I., Peters G.P., Canadell J.G., Arneth A., Arora V.K., Barbero L., Bastos A., Bopp L., Chevallier F., Chini L.P., Ciais P., Doney S.C., Gkritzalis T., Goll D.S., Harris I., Haverd V., Hoffman F.M., Hoppema M., Houghton R.A., Hurtt G., Ilyina T., Jain A.K., Johannessen T., Jones C.D., Kato E., Keeling R.F., Goldewijk K.K., Landschützer P., Lefèvre N., Lienert S., Liu Z., Lombardozzi D., Metzl N., Munro D.R., Nabel J.E.M.S., Nakaoka S., Neill C., Olsen A., Ono T., Patra P., Peregon A., Peters W., Peylin P., Pfeil B., Pierrot D., Poulter B., Rehder G., Resplandy L., Robertson E., Rocher M., Rödenbeck C., Schuster U., Schwinger J., Séférian R., Skjelvan I., Steinhoff T., Sutton A., Tans P P., Tian H., Tilbrook B., Tubiello F.N., van der Laan-Luijkx I.T., van der Werf G.R., Viovy N., Walker A.P., Wiltshire A.J., Wright R., Zaehle S., Zheng, B., Global Carbon Budget 2018, “Earth System Science Data” 2018, 10, 2141 –2194, https://doi.org/10.5194/essd-10-2141-2018.
  3. PMEL Carbon Program, SOCAT, https://www.pmel.noaa. gov/co2/story/SOCAT [dostęp: 5.09.2021].
  4. IEA, Global Energy Review 2021. Assessing the effects of economic recoveries on global energy demand and CO2 emissions in 2021, Francja 2021, https://iea.blob. core.windows.net/assets/d0031107-401d-4a2f-a48b- -9eed19457335/GlobalEnergyReview2021.pdf [dostęp: 1.10.2021].
  5. Climat Action, UE, https://ec.europa.eu/clima/eu-action/ climate-strategies-targets/2030-climate-energy-framework_pl [dostęp:15.09.2021].
  6. Commission staff working document, Assessment of the final national energy and climate plan of Poland, SWD(2020) 920, Bruksela 2020, https://ec.europa.eu/energy/sites/ default/files/documents/staff_working_document_ assessment_necp_poland_en.pdf [dostęp:15.09.2021].
  7. Regulation (EU) 2018/1999 of the European Parliament and of the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action, amending Regulations (EC) No 663/2009 and (EC) No 715/2009 of the European Parliament and of the Council, Directives 94/22/EC, 98/70/EC, 2009/31/EC, 2009/73/EC, 2010/31/ EU, 2012/27/EU and 2013/30/EU of the European Parliament and of the Council, Council Directives 2009/119/ EC and (EU) 2015/652 and repealing Regulation (EU) No 525/2013 of the European Parliament and of the Council.
  8. Commission Implementing Decision of 31 October 2013 on the adjustments to Member States’ annual emission allocations for the period from 2013 to 2020 pursuant to Decision No 406/2009/EC of the European Parliament and of the Council (2013/634/EU).
  9. Commission Decision (EU) 2017/1471 of 10 August 2017 amending Decision 2013/162/EU to revise Member States' annual emission allocations for the period from 2017 to 2020 (notified under document C(2017) 5556).
  10. Climate Action. European Union Transaction. Allocations to Stationary Installations https://ec.europa.eu/clima/ets/ napMgt.do;EUROPA_EUTLPUBLI001_PRD_JSESSIONID=AOGzUJTaY8C0nSDEraqFMshSGodYJVR151s7ObFs5ld6tbUf9ROE!945687656 [dostęp: 15.09.2021].
  11. Komisja Europejska, Pułapy i przydziały uprawnień do emisji, https://ec.europa.eu/clima/eu-action/eu-emissions- -trading-system-eu-ets/emissions-cap-and-allowances_pl [dostęp:15.09.2021].
  12. Regulation (EU) 2018/842 of the European Parliament and of the Council of 30 May 2018 on binding annual greenhouse gas emission reductions by Member States from 2021 to 2030 contributing to climate action to meet commitments under the Paris Agreement and amending Regulation (EU) No 525/2013 (Text with EEA relevance).
  13. Directive (EU) 2018/410 of the European Parliament and of the Council of 14 March 2018 amending Directive 2003/87/ EC to enhance cost-effective emission reductions and low- -carbon investments, and Decision (EU) 2015/1814.
  14. Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003 establishing a scheme for greenhouse gas emission allowance trading within the Community and amending Council Directive 96/61/EC (OJ L 275, 25.10.2003, p. 32).
  15. Ustawa z dnia 12 czerwca 2015 r. o systemie handlu uprawnieniami do emisji gazów cieplarnianych (Dz.U.2021.332).
  16. Commission Implementing Regulation (EU) 2020/2085 of 14 December 2020 amending and correcting Implementing Regulation (EU) 2018/2066 on the monitoring and reporting of greenhouse gas emissions pursuant to Directive 2003/87/EC of the European Parliament and of the Council (OJ L 423, 15.12.2020, p. 37–47).
  17. Dröge1 R., Peek C.J., Montfoort J.A., van der Maas C.W.M., Guis B., Baas C., van Hunnik O.R., van den Berghe A.C.W.M., Methodology report on the calculation of emissions to air from the sectors Energy, Industry and Waste ad used by the Dutch Pollutant Release and Transfer Reqister, National Institute for Public Health and the Environment, RIVM Report 2016-005.
  18. Rozporządzenie Ministra Klimatu i Środowiska z dnia 7 września 2021 r. w sprawie wymagań w zakresie prowadzenia pomiarów wielkości emisji (Dz.U. 2021, poz. 1710).
  19. Commission Regulation (EU) No 601/2012 of 21 June 2012 on the monitoring and reporting of greenhouse gas emissions pursuant to Directive 2003/87/EC of the European Parliament and of the Council (OJ L 181, 12.07.2012, p. 30–104).
  20. Wartości opałowe (WO) i wskaźniki emisji CO2 (WE) w roku 2015 do raportowania w ramach Systemu Handlu Uprawnieniami do Emisji za rok 2018, KOBiZE, Warszawa 2017.
  21. Wartości opałowe (WO) i wskaźniki emisji CO2 (WE) w roku 2016 do raportowania w ramach Systemu Handlu Uprawnieniami do Emisji za rok 2019, KOBiZE, Warszawa 2018.
  22. Wartości opałowe (WO) i wskaźniki emisji CO2 (WE) w roku 2017 do raportowania w ramach Systemu Handlu Uprawnieniami do Emisji za rok 2020, KOBiZE, Warszawa 2019.
  23. Wartości opałowe (WO) i wskaźniki emisji CO2 (WE) w roku 2018 do raportowania w ramach Systemu Handlu Uprawnieniami do Emisji za rok 20121, KOBiZE, Warszawa 2020.
  24. IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 1–5, 2006, https://www.ipcc-nggip.iges.or.jp/ public/2006gl/ [dostęp:15.09.2021].
  25. Wskaźniki emisyjności CO2 dla energii elektrycznej u odbiorców końcowych na podstawie informacji zawartych w Krajowej bazie o emisjach gazów cieplarnianych i innych substancji za 2014 rok, KOBiZE, Warszawa 2016.
  26. Wskaźniki emisyjności CO2, SO2, NOx, CO i TSP (pyłu całkowitego) dla energii elektrycznej na podstawie informacji zawartych wKrajowej bazie o emisjach gazów cieplarnianych i innych substancji za 2015 rok, KOBiZE, Warszawa 2017.
  27. Wskaźniki emisyjności CO2, SO2, NOx, CO i TSP (pyłu całkowitego) dla energii elektrycznej na podstawie informacji zawartych wKrajowej bazie o emisjach gazów cieplarnianych i innych substancji za 2016 rok, KOBiZE, Warszawa 2018.
  28. Wskaźniki emisyjności CO2, SO2, NOx, CO i TSP (pyłu całkowitego) dla energii elektrycznej na podstawie informacji zawartych wKrajowej bazie o emisjach gazów cieplarnianych i innych substancji za 2017 rok, KOBiZE, Warszawa 2018.
  29. Wskaźniki emisyjności CO2, SO2, NOx, CO i TSP (pyłu całkowitego) dla energii elektrycznej na podstawie informacji zawartych wKrajowej bazie o emisjach gazów cieplarnianych i innych substancji za 2018 rok, KOBiZE, Warszawa 2019.
  30. Wskaźniki emisyjności CO2, SO2, NOx, CO i TSP (pyłu całkowitego) dla energii elektrycznej na podstawie informacji zawartych w Krajowej bazie o emisjach gazów cieplarnianych i innych substancji za 2019 rok, KOBiZE, Warszawa 2020.
  31. Wskaźniki emisyjności CO2, SO2, NOx, CO i pyłu całkowitego dla energii elektrycznej na podstawie informacji zawartych w Krajowej bazie o emisjach gazów cieplarnianych i innych substancji za 2019 rok, KOBiZE, Warszawa 2020.
  32. EIA, Independent Statistics & Analysis. U.S. Energy Information Administration, How much carbon dioxide is produced per kilowatt hour of U.S. electricity generation? https://www.eia.gov/tools/faqs/faq.php?id=74&t=11 [dostęp:15.09.2021]
  33. Statistical Review of World Energy 2021, 70th edition of the annual report, BP 2021.
  34. US EPA, Greenhouse Gases Equivalencies Calculator, https://www.epa.gov/energy/greenhouse-gases-equival encies-calculator-calculations-and-references [dostęp: 15.09.2021].
  35. IPCC Report, https://www.ipcc.ch/assessment-report/ar4/ [dostęp:15.09.2021].
  36. US EPA, AVERT, U.S. national weighted average CO2 marginal emission rate, year 2019 data, U.S. Environmental Protection Agency, Washington DC. 2020.
  37. US EPA, AVoided Emissions and generation Tool (AVERT), https://www.epa.gov/avert [dostęp:17.09.2021].
  38. Wu D.D., Kefan X., Hua L., Shi Z., Olson D.L., Modelling technological innovation risks of an entrepreneurial team using system dynamics: An agent-based perspective, “Technological Forecasting and Social Change” 2010, 77, 857–869, https://doi.org/10.1016/j.techfore.2010.01.015.
  39. Dyson B., Chang N.-B., Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modelling, „Waste Management” 2005, 25, 669–679, https://doi.org/10.1016/j.wasman.2004.10.005.
  40. Arroyo M.F.R., Miguel L.J., The Trends of the Energy Intensity and CO2 Emissions Related to Final Energy Consumption in Ecuador: Scenarios of National and Worldwide Strategies, „Sustainability” 2020, 12, https://doi.org/10.3390/su12010020.
  41. Arvesen A., Hertwich E.G., Environmental implications of large-scale adoption of wind power: a scenario-based life cycle assessment, „Environmental Research Letter” 2012, 7, https://doi.org/10.1088/1748-9326/7/3/039501.
  42. IEA, Energy Technology Perspectives 2010: Scenarios and Strategies to 2050, OECD Publishing, Paris 2009.
  43. 2007 Life Cycle Inventory Database v2.1 http://www.ecoinvent.ch/ [dostęp:17.09.2021].
  44. Strømman A.H., Solli C., Hertwich E.G., Hybrid life-cycle assessment of natural gas based fuel chains for transportation. „Environtal Science & Technology” 2006, 40, 2797–2804.
  45. Pehl M., Arvesen A., Humpenöder F., Popp A., Hertwich E.G., Luderer G., Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling, „Nat Energy” 2017, 2, 939– 945, https://doi.org/10.1038/s41560-017-0032-9.
  46. Luderer G., Leimbach M., Bauer N., Kriegler E., Baumstark L., Bertram C., Giannousakis A., Hilaire J., Klein D., Levesque A., Mouratiadou I., Pehl M., Pietzcker R., Piontek F., Roming N., Schultes A., Schwanitz V.J., Strefler J., Description of the REMIND model (Version 1.6), Social Science Research Network, Potsdam 2015.
  47. Luderer G., Pehl M., Arvesen A., Gibon T., Bodirsky B.L., De Boer H.S., Fricko O., Hejazi M., Humpenöder F., Iyer G., et al., Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies, „Nature Communications” 2019, 10(1), 5229, https://doi. org/10.1038/s41467-019-13067-8.
  48. Pikaar I., Matassa S., Bodirsky B., Weindl I., Bruschi M., Humpenöder F., Rabaey K., Boon N., Yuan Z., van Zanten H., Herrero M., Verstraete W., Popp A, Decoupling livestock from land use through industrial feed production pathways, „Environmental Science & Technology” 2018, 52(13), 7351–7359, https://doi.org/10.1021/acs.est.8b00216.