Abstract

Aim: Safety air cushions play a key role in the Polish rescue system. The basic principles of operation of the jump cushion are based on controlled absorption of the kinetic energy of the human body falling from a great height. Thanks to the use of air layers and flexible energy-absorbing materials, the jump cushion is able to reduce the overload affecting the human body during contact with the shock-absorbing surface. The mechanism of impact overload during a fall involves a sudden deceleration and the accumulation of forces acting on the body, which creates a risk of injuries such as fractures, damage to internal organs or concussion. In order to ensure an optimal level of safety while minimising the risk of serious injuries to both rescuers and rescued people, it is important to understand the excessive deceleration mechanisms during a fall from a significant height. Safety air cushions are designed to slow the body down in a controlled manner by spreading kinetic energy over a larger surface area and for a longer period of time, which reduces the risk of serious injury. Typical g-forces on a well-designed air cushion are in the range of 5-10 g and exceeding them significantly increases the risk of injury.

Methodology: series of experiments was conducted, where drop test manikins weighting 40 kg to 90 kg and equipped with accelerometers were thrown from height of 16 metres onto jump cushion targets. During these experiments, various jump cushions from different manufacturers with air-filled frames fed via air tanks were used. The data gathered together with video recordings of those tests were then thoroughly analysed.

Conclusions: The research results established acceptable levels of g-force overload for the human body in specific boundary conditions. The data were confirmed consistent with the results accessible in the available literature and enabled the development of technical and operational requirements for safety cushions. The research emphasises the importance of refining the technical parameters of safety air cushions in order to ensure safety and minimise the risk of injuries during rescue operations. In the future, it may be necessary to conduct tests with a manikin of greater mass, which is dictated by the social tendency to gain weight, and to not limit falls to other places on the upper surface of the jump cushion, which may be significant for the magnitude of the overload occurring.

Keywords: air cushion, jump cushion, biomechanical overload, air-filled frame, air cushions, impact (shock) absorption technologies

Type of article: review article

Bibliography:

  1. 1] Scurlock J.T. 1974, US Patent 3,851,730, Inflatable safety cushion system for controlled deceleration from falls of greatheight, https://patentimages.storage.googleapis.com/25/12/59/47561f08f91250/US3851730.pdf [dostęp: 3.11.2024].
  2. Molski S., Kwaśniewski J., Gołkowski M., Grzybowski J., Czyż J., Skokochrony jako alternatywne rozwiązanie względem asekuracyjnych siatek bezpieczeństwa do ochrony zbiorowej podczas prac na wysokości, https://winntbg.bg.agh.edu.pl › NTT_tom1_129, https://doi.org/10.7494/978-83-66727-47-2_8. [dostęp: 3.11.2024].
  3. Lorsbach P. Jump rescue apparatus US Patent no. 4875548; 1989. [dostęp: 3.11.2024]. https://patentimages.storage.googleapis.com/4e/db/0e/9fedfaa57d70a5/US4875548.pdf [https://patents.google.com/patent/EP0317904B1/de?oq=EP0317904B1 [dostęp: 3.11.2024].
  4. Faraj R., Popławski B., Gabryel D., Kowalski T.,Hinc K. Analyses of the rescue cushion design – sensitivity study w: 7th European Conference on Structural Control Book of Abstracts and Selected Papers, red. J. Holnicki-Szulc, D. Wagg, Ł. Jankowski, (Warszawa, wydawnictwo Institute of Fundamental Technological Research, Polish Academy of Sciences, 2022), 138.
  5. Marklund P-O., Nilsson L., Simulation of airbag inflation processes using a coupledfluid structure approach. Comput Mech 2002;29:289–97, https://doi.org/10.1007/s00466-002-0341-z.
  6. Xiao Z., Wang L., Mo F., Zhao S., Liu C., Optimal design of pre-triggering airbag system for occupant protection performance during frontal crashes, “Journal of Automobile Engineering” 2018, 233(11), 2850–62, https://doi.org/10.1177/0954407018807330.
  7. Farmer M.E., Jain A.K., Smart automotive airbags: occupant classification and tracking, “IEEE Trans Veh Technol” 2007, 56(1), 60–80, https://doi.org/10.1109/TVT.2006.883768.
  8. Tamura T., Yoshimura T., Sekine M., Uchida M., Tanaka O., A wearable airbag to prevent fall injuries, “IEEE Trans Inf Technol Biomed” 2009, 13(6), 910–4, https://doi.org/10.1109/TITB.2009.2033673.
  9. Zhu H., Yang J., Zhang Y., Dual-chamber pneumatically interconnected suspension: modeling and theoretical analysis, “Mech Syst Signal Process” 2021, 147, 107125, https://doi.org/10.1016/j.ymssp.2020.107125.
  10. Huh S., Shim D.H., A vision-based automatic landing method for fixed-wing UAVs, “J Intell Robot Syst” 2010, 57(1–4), 217–31, https://doi.org/10.1007/s10846-009-9382-2.
  11. Cadogan D., Sandy C., Grahne M., Development and evaluation of the mars pathfinder inflatable airbag landing system, “Acta Astronaut” 2002, 50(10), 633–40, https://doi.org/10.1016/S0094-5765(01)00215-6.
  12. Faraj R., Popławski B., Gabryel D., Kowalski T., Hinc K., Adaptive airbag system for increased evacuation safety, “Engineering Structures” 2022, 270, 114853-1-5, https://doi.org/10.1016/j.engstruct.2022.114853.
  13. DIN 14151-3:2024-04 Sprungrettungsgeräte - Teil 3: Sprungpolster 16 - Anforderungen, Prüfung https://dx.doi.org/10.31030/3517953.
  14. Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 31 sierpnia 2021 r. w sprawie szczegółowych warunków bezpieczeństwa i higieny służby strażaków Państwowej Straży Pożarnej (Dz.U. 2020 poz. 1123, 1610, 2112 oraz 202 poz. 180, 464), https://www.prawo.pl/akty/dz-u-2021-1681,19145487.html [dostęp: 3.10.2024].
  15. Jasiński T., Znaczenie ukierunkowanego treningu fizycznego w zwiększaniu tolerancji organizmu pilota wojskowego na przyspieszenia +Gz, AWF im. Bronisława Czecha w Krakowie, „Studia i Monografie” 32, Kraków 2005.
  16. Breszka M.A., Wpływ ukierunkowanego treningu fizycznego podchorążych Lotniczej Akademii Wojskowej na tolerancję przyspieszeń +G, Rozprawa doktorska, Akademia Wychowania Fizycznego Józefa Piłsudskiego w Warszawie, Warszawa 2022, https://awf.edu.pl/__data/assets/pdf_file/0004/54715/M.Breszka_rozprawa_dr.pdf [dostęp: 3.10.2024].
  17. Zotomayora C., Ile przeciążenia może wytrzymać przeciętny człowiek?, https://www.solidsmack.com/pl/fabrication/how-much-g-force-can-an-average-human-withstand [dostęp: 3.11.2024].
  18. Medycyna lotnicza i kosmiczna, Barański S. (red.), PZWL, Warszawa 1977.
  19. Whinnery J.E., Jackson W.G., Reproducibility of +Gz tolerance testing, “Aviat Space Environ Med” 1979, 50(8), 825-8, https://pubmed.ncbi.nlm.nih.gov/496752/ [dostęp: 3.11.2024].
  20. Whinnery J.E., Jones D.R., Recurrent+ Gz-induced loss of consciousness, “Aviation, space, and environmental medicine” 1987 58(10):943-947 PMID: 3675465 - europepmc.org.
  21. Whinnery J.E., Recognizing+ Gz-induced loss of consciousness and subject recovery from unconsciousness on a human centrifuge, “Aviation, space, and environmental medicine” 1990 61(5):406-411 PMID: 2350309 - europepmc.org.
  22. Whinnery J.E., Medical considerations for human exposure to acceleration-induced loss of consciousness, “Aviation, space, and environmental medicine” 1991, 62(7), 618-623 PMID: 1898295.
  23. Stoll M., Human tolerance to positive G as determined by the physiological end points, “The Journal of Aviation Medicine” 1956, 27(4), 356–367.
  24. Snyder R.G., Human Impact Tolerance, “SAE Transactions” 1970, 79, 1375–1452, https://doi.org/10.4271/700398.
  25. SAE J211-1:1995.03 Instrumentation for impact test – part 1 – electronic instrumentation [dostęp: 3.11.2024].
  26. 057/BS/MNiSW/2022 Metody badawcze pojazdów pożarniczych oraz narzędzi i sprzętu pożarniczego CNBOP-PIB, 2023 [materiał niepublikowany].
  27. 057/BS/MEiN/2023 Metody badawcze pojazdów pożarniczych oraz narzędzi i sprzętu pożarniczego CNBOP-PIB, 2024 [materiał niepublikowany].
  28. Cygan Sz., Biomechanika Inżynierska, Instytut Metrologii i Inżynierii Biomedycznej, Politechnika Warszawska, https://www.docsity.com/pl/docs/biomechanika-inzynierska-1/9551591/ [dostęp: 3.10.2024].