Abstract
Aim: The article is concerned with the problem of convective flows interaction in the presence of lifting powers caused by high temperature conditions created by developed fires. Additionally, the article reveals an analysis of investigation results in this direction. The authors have shown, in an examination of the velocity structure of a ventilation flow during reverse movements of fire gases, that the flow is either separated into two parts (input and output to and from the chamber) or the flows are superimposed without taking account of a boundary layer near the roof of a mine working or zero air velocity movement at the walls, what happens in practice.
Methodology: In tandem with the intention to specify the interaction mechanism of the convective flows of the fire gases the authors simultaneously took into account both the turbulent and laminar movements of the gases by incorporating additional components to differential equations. Analytical solutions were obtained for velocity and temperature profiles in the proximity of the fire source.
Results: It was established that the presence of the boundary layer under the roof of the mine working sharply deforms the identified profiles, revealing the realistic picture of the process of the convective transfer of admixtures to the gravitation field. The calculations show that, in the absence of a fire, the velocity profile of the air flow taking account of turbulent and laminar movements, most accurately describes the velocity structure of the air flow. This is in contrast with the favored parabola curve for the laminar stream or with the straight line for turbulence when the velocity at the walls of the mine working does not equate to zero. The fundamental difference between the results derived from the technique developed by research and results derived by the popular methods is that the velocity profiles of the air flow realistically reproduce the turbulent movement of the fire gases in the stream core by taking account of the change to the laminar movement at the walls of the mine working, where the boundary layer is formed. The analysis of the results obtained reveals that in the absence of the fire the air velocity profile is symmetrical in relation to the axis of the mine working. By origin of the fire one can observe a deformation of the velocity profile, and this is attributable to the stream core movement towards the soil of the mine working, and air, in a sense, moves away from the roof. Ultimately, a moment occurs during which the stream is pushed down in the upper part of the mine working. Derived temperature profiles reveal the observed picture of the fire gases trail under the roof of the mine working with its gradual disperse.
Conclusions: The presented technique allows for linear evaluation of the fire gases flowing in reverse and that one of the hightemperature trial during the developed fire when the trail length will be at its maximum. The information acquired during observation and computer-aided prediction of reverse fire gases flows is necessary for the detection of the fire and its elimination.
Keywords: fire, flows of gases, velocity, temperature, laminar mode, turbulent mode, gravitation field, inclination of the working, overthrow of the flow, propagation distance
Type of article: original scientific article