Abstrakt
Cel: Artykuł poświęcony jest problemowi wzajemnego oddziaływania przepływów konwekcyjnych podczas wystąpienia sił nośnych w warunkach wysokich temperatur przy rozwiniętym pożarze. W artykule przedstawiono analizę wyników badań omawianego zjawiska. Autorzy wykazali, że przy badaniu struktury prędkości przepływu wentylacyjnego przy ruchach wstecznych gazów pożarowych przepływ rozdziela się na dwie składowe (wchodzącą i wychodzącą z obszaru wyrobiska) lub przepływy nakłada się na siebie bez uwzględnienia warstwy granicznej przy stropie wyrobiska oraz zmiany prędkości przepływu powietrza do zera przy ścianach, co zachodzi w rzeczywistości.
Metodologia: W celu określenia mechanizmu wzajemnego oddziaływania przepływów konwekcyjnych gazów pożarowych autorzy zaproponowali jednoczesne uwzględnianie przepływów turbulentnych i laminarnych dla gazów pożarowych poprzez wprowadzenie do równań różniczkowych dodatkowych składowych. Otrzymano rozwiązania analityczne dla profili prędkości i temperatury w pobliżu źródła pożaru.
Wyniki: Ustalono, że obecność warstwy granicznej pod stropem wyrobiska diametralnie zmienia przedstawione profile, pokazując rzeczywisty obraz procesu przepływu konwekcyjnego domieszek w polu grawitacji. Jak wykazały wyniki obliczeń, w sytuacji bez pożaru, profil prędkości przepływu powietrza uwzględniający tryb turbulentny i laminarny najdokładniej opisuje strukturę prędkości przepływu powietrza – w odróżnieniu od zwykle wykorzystywanej krzywej paraboli dla przepływu laminarnego lub linii prostej przy ruchu turbulentnym, kiedy prędkość na ścianach wyrobiska nie jest równa zero. Różnica pomiędzy wynikami otrzymanymi dzięki opracowanej metodyce badań wzajemnego oddziaływania strumieni konwekcyjnych a wynikami znanych metod polega na tym, że w przypadku tych pierwszych profile prędkości strumienia powietrza odwzorowują realny obraz przepływu turbulentnego w strumieniu głównym ze zmianą ruchu na laminarny przy ścianach wyrobiska, gdzie tworzy się warstwa graniczna. Analiza otrzymanych wyników wskazuje na to, że przy braku pożaru profil prędkości powietrza jest symetryczny względem osi wyrobiska. Podczas powstania pożaru obserwowana jest zmiana profilu prędkości, która polega na tym, że strumień główny przesuwa się do podłoża wyrobiska, a powietrze jakby odrywa się od stropu. Ostatecznie następuje moment, w którym w górnej części wyrobiska zachodzi zjawisko zmiany kierunku przepływu. Otrzymane profile temperatury odwzorowują obserwowane zjawisko przepływu gazów pożarowych pod stropem wyrobiska ze stopniową ich dyspersją.
Wnioski: Przedstawiona metoda pozwala ocenić drogę przepływu wstecznego gazów i drogę wysokotemperaturowego strumienia podczas pożaru rozwiniętego, kiedy długość przepływu osiąga wartość maksymalną. Informacje otrzymane w drodze obserwacji i symulacji komputerowej przepływu wstecznego gazów pożarowych są niezbędne do detekcji i zwalczenia pożaru.
Słowa kluczowe: pożar, strumienie gazów, prędkość, temperatura, tryb laminarny, tryb turbulentny, pole grawitacji, nachylenie wyrobiska, zmiana kierunku przepływu, zasięg rozprzestrzeniania
Typ artykułu: oryginalny artykuł naukowy