Abstract

Aim: This article attempts to present issues related to surface subsidence in areas of closed and inactive coal and lignite mines. Land reclamation is the necessity of degrading the natural environment and restoring it to its original state.

Introduction: Europe is giving up fossil fuels to reduce CO2 emissions into the atmosphere. It is also a result of the embargo imposed on 24 February 2022 on the Russian Federation on coal exports to European Union countries. This results in the search for alternatives to fossil fuels in all sectors of the economy. The direction of the search is towards choosing "green energy", which, due to its potential wide application, is already being treated as an instrument of climate neutrality. Many EU countries have decided to achieve climate neutrality by 2050, which means reducing greenhouse gas emissions by approximately 95% compared to the baseline year of 1990. However, achieving climate neutrality will require eliminating emissions not only in the electricity sector, but also in other sectors. As a result of this process, further areas requiring action after the mines are closed will be created, especially in Upper Silesia. Reclamation of post-mining areas is a very difficult task because there is no universal method of planning reclamation. Many forms of environmental degradation have been observed during mining activities.

Methodology: The article uses theoretical and practical research methods, including the analysis of a report on satellite methods, which was developed on the basis of data from satellite radar interferometry. The land surface movement system belongs to the group of products of the Copernicus program, which involves monitoring the land surface, and its implementation was commissioned by the European Environment Agency (EEA). Moreover, the article was based on publications by domestic and foreign authors, authorities in the field of environmental engineering.

Conclusions: Methods for reducing the negative impact of mining on the environment have long been developed and improved at all stages of mining activity, from reconnaissance work to the closure of a mining plant. One of the ways to reduce the negative impact of mining on the world's environment is the recultivation of post-mining areas, thanks to which the areas transformed due to mining activities are restored to their utility or natural values.

Keywords: post-mining areas, environmental degradation, reclamation, land regeneration

Type of article: case study

Bibliography:

  1. Mishra S.K., Hitzhusen F.J., Sohngen B.L., Guldmann J.M., Costs of abandoned coal mine reclamation and associated recreation benefits in Ohio, “J. Environ. Manag.” 2012, 100, 52–58.
  2. Misa, R., Sroka A., Tajduś K., Dudek M., Analytical design of selected geotechnical solutions which protect civil structures from the effects of underground mining, “J. Sustain. Min.” 2019, 18, 1–7.
  3. Al Heib M., Nicolas M., Noirel J.F., Wojtkowiak F., Residual subsidence analysis after the end of coal mine work Example from Lorraine Colliery, France, in: Proceedings of the Post--Mining, Nancy, France, 16–17 November 2005.
  4. Guéguen Y., Deffontaines B., Fruneau B., Al Heib M., Michele M., Raucoules D., Guise Y., Planchenault J., Monitoring residual mining subsidence of Nord/Pas-de-Calais coal basin from differential and Persistent Scatterer Interferometry (Northern France)., “J. Appl. Geophys.” 2009, 69, 24–34.
  5. Cała M., Tajduś A., Andrusikiewicz W., Kowalski M., Kolano M., Stopkowicz A. Cyran K., Jakóbczyk J., Long term analysis of deformations in salt mines: Kłodawa Salt Mine case study, central Poland, “Arch. Min. Sci.” 2017, 62, 565–577.
  6. Hoek E., Surface and Underground Project Case Histories: Comprehensive Rock Engineering: Principles, Practice and Projects, Elsevier, Amsterdam 2016.
  7. Bell F.G., Bullock S.E.T., Hälbich T.F.J., Lindsay P., Environmental impacts associated with an abandoned mine in the Witbank Coalfield, “South Africa. Int. J. Coal Geol.” 2001, 45, 195–216, https://doi.org/10.1007/s40789-020-00375-4.
  8. Gray R.E., Bruhn R.W., Turka R.J., Study and Analysis of Surface Subsidence over the Mined Coal Bed, GAI Consultants Inc., Springfield, IL, USA 1977.
  9. Vervoort A., Declercq P.Y., Surface movement above old coal longwalls after mine closure, “Int. J. Min. Sci. Technol.” 2017, 27, 481–490.
  10. Niemczyk O.m Bergschadenkunde—Investigation of subsidence damage caused by mining, Verlag Glückauf 1949, 27, 291.
  11. Flaschentrager H., Considerations on ground movement phenomena based on observations made in the left bank Lower Rhine region, in: Proceedings of the European Congress on Ground Movement, Leeds 1957, 58–73.
  12. Czubik E., Über die zeitliche Entwicklung des Senkungsablaufes an der Tagesoberfläche beim Abbau von Steinkohlenflözen, Berg-Und Hütten-Männische Mon., 1971, 69, 293–301.
  13. Knufinke P., Zum Phänomen lokaler Höhenänderungen an der Tagesoberfläche, in: Proceedings of the IX Congress ISM, Praha, Czech Republic, 18–22 April 1994.
  14. Blachowski J., Cacon S., Milczarek W., Analysis of post--mining ground deformations caused by underground coal extraction in complicated geological conditions, “Acta Geodyn. Geomater” 2009, 6, 351–357.
  15. Słownik pojęć i terminów stosowanych w raportach Centrum Geozagrożeń PIG-PIB dotyczących zapadlisk, https://www.pgi.gov.pl/zapadliska-home/slownik-pojec.html [dostęp: 10.11.2024].
  16. Głowacki T., Milczarek W., Powierzchniowe deformacje wtórne dawnych terenów górniczych, „Min. Sci.” 2013, 20, 39–55.
  17. Schäfer A., Zur Verteilung der Bodenbewegungen an der Tagesoberfläche nach Grubenwasseranstieg in einer Steinkohlenlagerstätte, in: Proceedings of the Bergbau, Energie und Rohstoffe, Tagungsband, Freiberg, Germany, 7–9.10.2015, 158–170.
  18. Oksińska B., Zielona energia przyćmiła paliwa kopalne. Pierwsza taka sytuacja w historii UE, https://businessinsider.com.pl/gospodarka/zielona-energia-przycmila-paliwa-kopalne-pierwsza-taka-sytuacja-w-historii-ue/5emqcgv [dostęp: 30.10.2024].
  19. Jaroszewski W., Czy geologia jest nauką?, „Przegląd Geologiczny” 1985, 33, 10, https://geojournals.pgi.gov.pl/pg/article/view/17912 [dostęp: 30.10.2024].
  20. Główny Instytut Górnictwa w Katowicach, https://zapadliska.gig.eu [dostęp: 30.10.2024].
  21. Technical library, https://land.copernicus.eu/user-corner/technical-library/european-ground-motion-service [dostęp: 30.10.2024].
  22. Wychodnie skalne, Portal Zielone Podkarpacie, https://www.zielonepodkarpacie.pl/formy-skalne/wychodnie--skalne/ [dostęp: 30.10.2024].
  23. Peduzzi P., UNEP. Global Environmental Alert Service—Sand,Rarer than One Thinks, UNEP, Athens 2014.
  24. Dulias R., Landscape planning in areas of sand extraction in the Silesian Upland, Poland, “Landsc. Urban Plan.” 2010, 95, 3, 91–104, https://doi.org/10.1016/j.landurbplan.2009.12.006.
  25. Gorova A., Pavlychenk, A., Kulyna S., Ecological Problem of post-mining areas, in: Geomechanical Processes during Underground Mining, G. Pivnyak, V. Bondarenko, I. Kovalevs’ka, M. Illiashov, (eds.), CRC Press, Boca Raton, USA 2012.
  26. Różkowski J., Rahmonov O., Szymczyk A., Environmental Transformations in the Area of the Kuźnica Warężyńska Sand Mine, Southern Poland, “Land” 2020, 9, 116, https://doi.org/10.3390/land9040116.
  27. Abramowicz A., Rahmonov O., Chybiorz R., Environmental Management and Landscape Transformation on Self-Heating Coal-Waste Dumps in the Upper Silesian Coal Basin, “Land” 2021, 10, 23, https://doi.org/10.3390/land10010023.
  28. Kantor-Pietraga I., Zdyrko A., Bednarczyk J., Semi-Natural Areas on Post-Mining Brownfields as an Opportunity to Strengthen the Attractiveness of a Small Town. An Example of Radzionków in Southern Poland, “Land” 2021, 10, 761, https://doi.org/10.3390/land10070761.
  29. Rahmonov O., Skreczko S., Rahmonov M., Changes in Soil Features and Phytomass during Vegetation Succession in Sandy Areas, “Land” 2021, 10, 265, https://doi.org/10.3390/land10030265.
  30. Pratiwi Narendra B.H., Siregar C.A., Turjaman M. et al., Managing and Reforesting Degraded Post-Mining Landscape in Indonesia: A Review, “Land” 2021, 10, 658, https://doi.org/10.3390/land10060658.
  31. Rurek M., Gonia A., Hojan M., Environmental and Socio-Economic Effects of Underground Brown Coal Mining in Piła Młyn (Poland), “Land” 2022, 11, 219, https://doi.org/10.3390/land11020219.
  32. Rostański K.M., Contaminated Areas as Recreational Places— Exploring the Validity of the Decisions Taken in the Development of Antonia Hill in Ruda Śląska, Poland, “Land” 2021, 10, 1165, https://doi.org/10.3390/land10111165.
  33. Solarski M., Krzysztofik R., Is the Naturalization of the Townscape a Condition of De-Industrialization? An Example of Bytom in Southern Poland, “Land” 2021, 10, 838, https://doi.org/10.3390/land10080838.
  34. Światowy szczyt na rzecz klimatu COP 29 (Baku, Azerbejdżan), 12–13 listopada 2024, Portal internetowy Rady UE i Rady Europejskiej, https://www.consilium.europa.eu/pl/meetings/international-summit/2024/11/12-13/ [dostęp: 03.12.2024].