Abstract

Aim: The aim of the research was to demonstrate that the use of low-emission carbon fuels (obtained using the initial thermal conversion of coal feedstock) in residential heating also makes it possible to reduce mercury emissions from small-scale coal-fired boilers.

Project and methods: The publication presents the results of mercury emission tests conducted using five different small-scale coal-fired boilers and five different coal fuels. The research was carried out under laboratory conditions, but also using heating devices of residential users. They covered a wide range of operational parameters, both energy and emission. The flux of coal fuels burned ranged from 2 to 12.2 kg/h, with an equally wide range of boiler efficiencies obtained – 67.6–88.5%.

Results: The test results presented in the article show that the amount of emissions of pollutants limited by the criteria of the PN-EN 303-5+A1:2023-05 standard and the ecodesign, namely carbon monoxide, nitrogen oxides, dust and organic substances, depends mainly on the design and operating conditions of the device in which the specific solid fuel is burned. There is a group of pollutants emitted into the atmosphere, for which the amount of emissions depends primarily on the quality of the fuel burned. These pollutants include sulphur oxides and mercury, whose emissions depend primarily on the combustible sulphur and mercury content of the fuel being burned.

Conclusions: Experimental studies were carried out to verify what portion of Hg contained in coal during its combustion in domestic boilers with manual and automatic fuel feeding remains bound in bottom ash, and what is emitted into the atmosphere. The content of Hg in bottom ash, regardless of the boiler and fuel used, was at a similar low level, reaching a maximum of about 6% of Hg initially contained in the fuel. As studies have shown, more than 94% of mercury contained in coal fuels burned in small-scale coal-fired boilers is emitted into the atmosphere, contributing significantly to the deterioration of the environment. Replacing traditional coal with low-emission carbon fuels (e.g., such as BC fuel) would significantly reduce mercury emissions from small-scale coalfired boilers, by up to 90% compared to current emissions. Setting a legal requirement for the permissible level of mercury content in coal fuels used in domestic boilers, for example, at a maximum value of 0.05 mg/kg, would reduce mercury emissions from these devices by at least half.

Keywords: mercury emission, small-scale coal-fired boilers, low-emission carbon fuel

Type of article: original scientific article

Bibliography:

  1. Kabata-Pendias A., Pendias H., Biogeochemistry of trace elements, PWN, Warszawa, 1999.
  2. Feng X.B., Qiu G.L., Fu X.W., He T.R., Li P., Wang S.F., Mercury pollution in the environment, „Progress in chemistry” 2009, 21(2–3), 436–457.
  3. UN Environment, Global Mercury Assessment 2018, UN Environment Programme, Chemicals and Health Branch Geneva, Switzerland 2019.
  4. Arctic Monitoring and Assessment Programme, Technical Background Report for the Global Mercury Assessment, Oslo 2017.
  5. Wichliński M., Emisja rtęci z polskich elektrowni w świetle konkluzji BAT, „Polityka Energetyczna” 2017, 20, 79–88.
  6. Pilar L., Borovec K., Szeliga Z., Górecki J., Mercury emission from three lignite-fired power plants in the Czech Republic, „Fuel Process. Technol.” 2021, 212, 106628, https://doi.org/10.1016/j.fuproc.2020.106628.
  7. WysokieNapiecie.pl, https://wysokienapiecie.pl/81733-produkcja- energii-elektrycznej-w-polsce/ [accessed: 17. 07.2023].
  8. Globenergia, https://globenergia.pl/ponad-21-energii-pochodzilo- z-oze-miks-energetyczny-i-struktura-produkcji-energii- w-polsce-w-2022-r/ [accessed: 17.07.2023].
  9. Burmistrz P., Kogut K., Marczak M., Zwoździak J., Lignites and subbituminous coals combustion in Polish power plants as a source of anthropogenic mercury emission, „Fuel Processing Technology.” 2016, 152, 250–258, https://doi.org/10.1016/j.fuproc.2016.06.011.
  10. Pešek J., Bencko V., Sýkorová I., Vašíček M., Michna O., Martínek K., Some trace elements in coal of the Czech Republic, Environment and Health Protection Implications, "Central European Journal of Public Health” 2005, 13(3), 153–158.
  11. Czaplicka M., Pyta H., Transformations of mercury in processes of solid fuel combustion – review, „Archives of Environmental Protection” 2017, 43(4), 82–93, https://doi.org/10.1515/aep-2017-0041.
  12. WSZYSTKOoEMISJACH.pl, https://wszystkooemisjach. pl/342/konkluzje-bat-dla-duzych-obiektow-energetycznego- spalania-lcp, [accessed: 17.07.2023].
  13. Ministerstvo Prumyslu a Obchodu, Assessment of the potential for the application of high-efficiency cogeneration and efficient district heating and cooling in the Czech Republic, Praga 2020.
  14. Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for the setting of ecodesign requirements for energy-related products, https://eur-lex.europa.eu/legal-content/EN/ TXT/PDF/?uri=CELEX:02009L0125-20121204 [accessed: 18.07.2023].
  15. GUS, Energy consumption in households in 2018, Warsaw 2019.
  16. Matuszek K., Hrycko P., Stelmach S., Sobolewski A., Carbonaceous smokeless fuel and modern small-scale boilers limiting the residential emission. Part 1. General aspects, „Przemysł Chemiczny” 2016, 95(2), 223–227, https://doi.org/10.15199/62.2016.2.8.
  17. Matuszek K., Hrycko P., Stelmach S., Sobolewski A., Carbonaceous smokeless fuel and modern small-scale boilers limiting the residential emission. Part 2. Experimental tests of a new carbonaceous smokeless fuel, „Przemysł Chemiczny” 2016, 95(2), 228–230, https://doi.org/10.15199/62.2016.2.9.
  18. PN-EN 303-5+A1:2023-05 Kotły grzewcze – Część 5: Kotły grzewcze na paliwa stałe z ręcznym i automatycznym zasypem paliwa o mocy nominalnej do 500 kW – Terminologia, wymagania, badania i oznakowanie.
  19. Wichliński M., Kobyłecki R., Bis Z., Emisja rtęci podczas termicznej obróbki paliw, „Polityka Energetyczna” 2011, 14, 191–202.
  20. Misztal E., Chmielniak T., Mazur I., Sajdak M., The release and reduction of mercury from solid fuels through thermal treatment prior to combustion, „Energies” 2022, 15(21), 7987, https://doi.org/10.3390/en15217987.
  21. Wichliński M., Kobyłecki R., Bis Z., Niskotemperaturowa obróbka termiczna węgli wzbogaconych i niewzbogaconych w celu obniżenia zawartości rtęci, „Polityka Energetyczna” 2015, 18, 113–124.
  22. Chmielniak T., Głód K., Kopczyński M., Piroliza węgla dla obniżenia emisji rtęci z procesów spalania do atmosfery, in: Nowe technologie spalania i oczyszczania spalin, Nowak W., Pronobis M., (red.), Wydawnictwo Politechniki Śląskiej, 2010, 389–411.
  23. Dziok T., Production of low-mercury solid fuel by mild pyrolysis process, „Energies” 2023, 16(7), 3046, https://doi.org/10.3390/en16073046.
  24. Dziok T., Grzywacz P., Bochenek P., Assessment of mercury emissions into the atmosphere from the combustion of hard coal in a home heating boiler, „Environ Sci Pollut Res Int.” 2019, 26(22), 22254–22263; https://doi.org/10.1007/s11356-019-05432-3.
  25. Fernández-Miranda N, Rodríguez E., Lopez-Anton M.A., García R., Martínez-Tarazona M.R., A new approach for retaining mercury in energy generation processes: regenerable carbonaceous sorbents, „Energies” 2017, 10(9), 1311, https://doi.org/10.3390/en10091311.
  26. Telenga-Kopyczyńska J., Konieczyński J., Sobolewski A., Emisja rtęci z procesu koksowania węgla, in: Proceedings of the KOKSOWNICTWO Conference, Poland 2012.