Abstrakt

Cel: W artykule omówiono zagadnienie równania rozkładu stacjonarnego pola temperatury w wielowarstwowej płycie przy obecności zarówno rozłożonych, jak i skupionych wewnętrznych źródeł ciepła z uwzględnieniem nieidealnego kontaktu termicznego między warstwami.

Wprowadzenie: Badanie pól temperatury w wielowarstwowych konstrukcjach jest wciąż aktualne, ponieważ konstrukcje tego typu wykorzystywane są na przykład w budownictwie. Wysokie temperatury stwarzają zagrożenie zniszczenia konstrukcji, wskutek pojawienia się znacznych naprężeń cieplnych w związku z procesem nagrzewania. Powszechnie wiadomo, że wyliczenie takich naprężeń możliwe jest tylko poprzez rozwiązanie odpowiednich równań przewodnictwa cieplnego. Zagadnieniom określania pól temperatury w wielowarstwowych strukturach poświęconych jest wiele prac. W większości tych prac rozwiązanie takich zadań odbywało się bez uwzględnienia źródeł ciepła, przy czym używano metodę równań sprzężonych. Przy liczbie warstw równej n>3 objętość przeprowadzanych obliczeń dramatycznie wzrasta. Ponadto wykorzystywana jest procedura różniczkowania współczynników równań quazi-różniczkowych, co prowadzi do problemu zwielokrotnienia funkcji uogólnionych. Taka procedura nie jest konieczna i łatwo ją zastąpić koncepcją quazi-pochodnych.

Metodologia: Podczas formułowania zadania współczynnik przewodzenia ciepła i intensywność wewnętrznych źródeł ciepła zapisywane były w postaci splajnów za pomocą charakterystycznych funkcji przedziałów, a uwzględnienia intensywności skupionych źródeł dokonywano z wykorzystaniem funkcji Diraca (δ) poprzez prowadzenie po prawej stronie odpowiedniego równania quasi- -różniczkowego. Do takiego równania dodawane są znane warunki naprężenia i warunki początkowe, do których, jednoznacznie można sprowadzić dowolne dwupunktowe warunki brzegowe. Następnie z wykorzystaniem koncepcji quazi-pochodnych przedstawione zadanie sprowadza się do ekwiwalentnego zagadnienia Cauchy'ego dla odpowiednich systemów równań różniczkowych z oddziaływaniem impulsowym.

Wnioski: W danym opracowaniu otrzymano rozwiązanie równania rozkładu stacjonarnego pola temperatury w płycie wielowarstwowej z uwzględnieniem zarówno rozłożonych, jaki i skupionych źródeł ciepła w warunkach nieidealnego kontaktu cieplnego (termicznego) między warstwami. Podano przykład obliczenia pola temperatury w ośmiowarstwowej płycie poddawanej różnym kontaktom cieplnym między warstwami, jak również równoczesnym lub nierównoczesnym rozłożonym i skupionym źródłom ciepła. Bazując na założeniach fizyki, odpowiednie równanie różniczkowe zapisywane było w kartezjańskim układzie współrzędnych, jednak przedstawiona metoda bez większych trudności może znaleźć zastosowanie w podobnych zadaniach z użyciem cylindrycznych lub sferycznych układów współrzędnych.

Typ artykułu: oryginalny artykuł naukowy