Abstrakt

Cel: Celem badań było określenie parametrów mikro- i makrostruktury strumieni wytwarzanych przez dysze różnego typu oraz wskazanie potencjalnych zastosowań badanych dysz wodnych, w tym do gaszenia pożarów i usuwania zanieczyszczeń z powietrza.

Projekt i metody: Badaniom poddano dysze wodne TF6 FCN, TF6 V, NF 15 oraz CW 50. Przy ciśnieniu zasilania równym 0,2 MPa, 0,4 MPa oraz 0,6 MPa zmierzono i wyznaczono podstawowe parametry mikro- i makrostruktury strumieni: natężenie przepływu, kąt rozpylenia, rozkład masowy cieczy na powierzchni (intensywność zraszania), nierównomierność rozkładu gęstości zraszania oraz średnie średnice kropel i widmo rozpylenia. Do określenia paramentów mikrostrukturalnych strumienia zastosowano analizator widma rozpylenia, wykorzystujący metodę fotoelektryczną.

Wyniki: Badane dysze generowały strumienie rozpylone o różnych parametrach. Wśród analizowanych dysz największy stopień dyspersji uzyskano dla próbki TF 6 FCN, której średnia średnica Sautera (SMD) dochodziła do wartości 217.3 μm. Dla porównania w przypadku dyszy NF15 parametr ten wynosił 945 μm. Widma rozpylenia wskazują na dużą jednorodność dyspersji wody w strumieniu wytworzonym przez dysze: TF 6 FCN i CW 50. Z rozkładu masowej gęstości zraszania wynika, że dysza CW 50 wykazuje największą równomierność zraszania. Jednocześnie podaje ona jednak małą ilość wody, ponieważ wartość gęstości zraszania dla tego wyrobu nie przekroczyła 100 g/(m2 · s), podczas gdy dla dyszy NF 15 wynosiła ona ponad 2700 g/(m 2 · s). Uzyskane kąty rozpylenia były zbliżone do deklarowanych przez producenta dysz. W badaniach wszystkich próbek zaobserwowano niewielki wpływ ciśnienia zasilania na wartości tego parametru.

Wnioski: Przeprowadzone badania pozwoliły stwierdzić m.in., że w przedziale ciśnień zasilania 0,2÷0,6 MPa wartości kąta rozpylenia oraz powierzchni zraszania analizowanych dysz były stałe lub zarejestrowane różnice była nieznaczne. Dodatkowo ustalono, że w przypadku dysz o pełnych stożkach zra szania wzrost ciśnienia zasilania (w zakresie deklarowanych wartości pracy) ma mały wpływ na zmianę parametrów mikro- i makrostruktury strumienia. Przeprowadzone badania wykazały możliwości potencjalnego zastosowania dwóch dysz (TF6 FCN, CW 50) w niskociśnieniowych mgłowych systemach gaśniczych wytwarzających mgłę o średnicy kropel SMD > 200 μm. Do celów absorpcji substancji niebezpiecznych rekomenduje się zastosowanie dysz o dużym kącie rozpylenia i pełnym stożku zraszania, które – jak pokazały testy – wytwarzają jednorodne strumienie o małej średnicy kropel.

Słowa kluczowe: dysze wodne, rozpylanie wody, widmo rozpylenia, masowa gęstość zraszania, mgła wodna

Typ artykułu: oryginalny artykuł naukowy

Bibliografia:

  1. Orzechowski Z., Prywer J. Wytwarzanie i zastosowanie rozpylonej cieczy, Wydawnictwo Naukowe PWN SA, Warszawa 2018.
  2. Roguski J., Zbrożek P., Czerwienko D., Wybrane aspekty stosowania w obiektach budowlanych urządzeń gaśniczych na mgłę wodną, Wydawnictwo CNBOP-PIB, Józefów 2012.
  3. Ilari A., Piancatelli S., Centorame L., Moumni M., Romanazzi G., Foppa Pedretti E., Distribution quality of agrochemicals for the revamping of a sprayer system based on lidar technology and grapevine disease managemen, “Applied Sciences”, 2023, 13(4):2222, https://doi.org/10.3390/app13042222.
  4. Fessler L., Pietsch G., Wright W., Zhu H., Xiaocun S., Fulcher A., Characterizing spray deposits from variable and constant-rate spray technologies: Implications for future optimization to target trunk and foliar pests, XXXI Międzynarodowy Kongres Ogrodniczy, 2023, 1360, https://doi.org/10.17660/ActaHortic.2023.1360.34.
  5. Jiang Y., Yang Z., Xu, X., Shen D., Jiang T., Xie B., Duan J., Wetting and deposition characteristics of air-assisted spray droplet on large broad-leaved crop canopy, “Frontiers in Plant Science” 2023, 14, https://doi.org/10.3389/fpls.2023.1079703.
  6. Moon S., Li T., Sato K., Yokohata H., Governing parameters and dynamics of turbulent spray atomization from modern GDI injectors, “Energy” 2017, 127, 89–100, https://doi.org/10.1016/j.energy.2017.03.099.
  7. Huang W., Gong H., Pratama R. H., Moon S., Takagi K., Chen Z., Potential for shock-wave generation at diesel engine conditions and its influence on spray characteristics., “Energies” 2020, 13(23), 6465, https://doi.org/10.3390/en13236465.
  8. Gałaj J., Wójcik B., Assessment of the impact of extinguishing with a low-pressure fog lance on a fire environment, “Sustainability” 2022, 14(11), 6731, https://doi.org/10.3390/su14116731.
  9. Drzymała T., Gałaj J., Wójcik M., Analiza wpływu wydatku i ustawienia głowicy prądownicy TurboJet 52 na rozkład intensywności zraszania w strumieniu rozpylonym, „Zeszyty Naukowe SGSP” 2017, 61, 151–169.
  10. Gui X., Xue H., Hu Z., Cui Z., Influence of water mist nozzle characteristic parameters on oil pool fire extinguishing in confined space, “Arabian Journal for Science and Engineering” 2023, 48(3), 3441–3454, https://doi.org/10.1007/s13369-022-07162-0.
  11. Bara A., Dusserre G., The use of water curtains to protect firemen in case of heavy gas dispersion, “Journal of Loss Prevention in the Process Industries” 1997, 10(3), 179–183, https://doi.org/ org/10.1016/S0950-4230(96)00049-6.
  12. Cui Y., Liu J., Research progress of water mist fire extinguishing technology and its application in battery fires, “Process Safety and Environmental Protection” 2021, 149, 559–574, https://doi.org/10.1016/j.psep.2021.03.003.
  13. Buchlin, J.-M., Mitigation of industrial hazards by water spray curtains, “Journal of Loss Prevention in the Process Industries” 2017, Part A, 50, 91–100, https://doi.org/10.1016/j.jlp.2017.08.007.
  14. 14] Węsierski T., Majder-Łopatka M., Wąsik W., Study of water curtain effectiveness to fight against vapours of methyl acetate during uncontrolled release, “MATEC Web of Conferences FESE 2018” 2018, 247, https://doi.org/10.1051/matecconf/201824700050.
  15. Węsierski, T., Majder-Łopatka M., Comparison of water curtain effectiveness in the elimination of airborne vapours of ammonia, acetone, and low-molecular aliphatic alcohols, “Applied Sciences” 2018, 8(10), https://doi.org/10.3390/app8101971.
  16. Cheng Ch., Tan W., Du H., Liu L., A modified steady-state model for evaluation of ammonia concentrations behind a water curtain, “Journal of Loss Prevention in the Process Industries” 2015, 36, 120–124, https://doi.org/10.1016/j.jlp.2015.05.018.
  17. Węsierski T., Majder-Łopatka M., Wąsik W., Control of ammonia space contaminations by using turbine fire-fighting vehicles, “Przemysł Chemiczny” 2017, 1(5), 145–149, https://doi.org/10.15199/62.2017.5.21.
  18. Fedoruk M.J., Bronstein R., Kerger B.D., Ammonia exposure and hazard assessment for selected household cleaning product uses, “J. Expo. Anal. Sci. Environ. Epidemiol.” 2005, 15(6), 534–544, https://doi.org/10.1038/sj.jea.7500431.
  19. Zhang J., Liang P., Liu Y., Impingement and breakup characteristics of free opposed impinging jets with unequal nozzle diameter, “Experimental Thermal and Fluid Science” 2023, 145, https://doi.org/10.1016/j.expthermflusci.2023.110884.
  20. Shen X., Zhang J., Hua M., Pan X., Experimental research on decontamination effect of water curtain containing compound organic acids on the leakage of ammonia , “Process Safety and Environmental Protection” 2017, 105, 250–261, https://doi.org/10.1016/j.psep.2016.10.016.
  21. Fedak W., Ulbrich R., Ligus G., Wasilewski M., Kołodziej S., Wasilewska B., Ochowiak M., Włodarczak S., Krupińska A., Pawlenko I., Influence of Spray Nozzle Operating Parameters on the Fogging Process Implemented to Prevent the Spread of SARS-CoV-2 Virus, “Energie” 2021, 14(14), 4280, https://doi.org/10.3390/en14144280.
  22. Ochowiak M., Krupińska A., Włodarczak S., Matuszak M., Woziwodzki S., Szulc T., Analysis of the possibility of disinfecting surfaces using portable foggers in the era of the SARS-CoV-2 epidemic, “Energies” 2021, 14(7), https://doi.org/10.3390/en1407201.
  23. Ochowiak M., Włodarczak S., Krupinska A., Matuszak M., Fedak, W., Ligus G., Kołodziej S., Wasilewska B., Spray curtains as devices for surface spraying during the SARS-CoV-2 pandemic, “Environ. Res.” 2022, 206, 112562, https://doi.org/10.1016/j.envres.2021.112562.
  24. Zbrożek P., Prasuła J., Wpływ wielkości średnic kropli mgły wodnej na efektywnoś ć tłumienia pożarów i chłodzenie, BiTP Vol. 15 Issue 3, 2009, pp. 113–148, https://panel.sft.cnbop.pl/storage/46730e51-ab6c-4e41-83c8-e82249dbce2f.
  25. Orzechowski Z., Prywer J., Wytwarzanie i zastosowanie rozpylonej cieczy, w Wydanie I, WNT, Warszawa 2008.
  26. Ochowiak M., Krupińska A., Włodarczak S., Matuszak M., Markowska M., Janczarek M., Szulc T., The two-phase conical swirl atomizers: Spray characteristics, „Energies” 2020, 13(13), 3416, https://doi.org/10.3390/en13133416.
  27. Wąsik W., Rogula-Kozłowska W., Majder-Łopatka M., Ocena mikrostruktury strumienia wytwarzanego przez dyszę spiralną o pełnym stożku zraszania “Zeszyty Naukowe SGSP” 2021, 79, 105–122.
  28. Wąsik W., Walczak A., Węsierski T., The impact of fog nozzle type on the distribution of mass spray density, “MATEC Web of Conferences FESE” 2018, 247, https://doi.org/10.1051/matecconf/201824700058.
  29. Birouk M., Lekic N., Liquid jet breakup in quiescent atmosphere, “Atomization and Sprays” 2009, 19(6), 501–528, https://doi.org/10.1615/atomizspr.v19.i6.20.
  30. Qian S., Zhu D. Z., Xu H., Splashing generation by water jet impinging on a horizontal plate, “Experimental Thermal and Fluid Science” 2022, 130, https://doi.org/10.1016/j.expthermflusci.2021.110518.
  31. Majder-Łopatka M., Węsierski T., Wąsik W., Binio Ł., Effects of the Supply Pressure in a Spiral Vortex Nozzle on a Dispersion Angle and the Sprinkling Density of Water Jet, “Zeszyty Naukowe SGSP” 2017, 61, 137–151.
  32. Hua M., Qi M., Yue, T.-T., Pi X.-Y., Pan X.-H., Jiang J.-C., Experimental Research on Water Curtain Scavenging Ammonia Dispersion in Confined Space, “Procedia Eng.” 2018, 211, 256–261, https://doi.org/10.1016/j.proeng.2017.12.011.
  33. Instrukcja obsługi Analiza Widma Kropel IPS, Zakład Elektronicznej Aparatury Pomiarowej Firma KAMIKA Instruments Sp. z o.o., Warszawa 2009.
  34. Wąsik W., Majder-Łopatka M., Rogula-Kozłowska W., Influence of micro- and macrostructure of atomized water jets on ammonia absorption efficiency, “Sustainability” 2022, 14, 9693, https://doi.org/10.3390/su14159693.
  35. BETE Europe GmbH, Catalog card nozzles TF 2023, https://www.bete-dysze.pl/files/bete-duesen-de/pdf/vollkegel/tf.pdf [dostęp: 01.01.2023].
  36. BETE Europe GmbH, Catalog card nozzles TF 2023, https://www.bete-dysze.pl/files/bete-duesen-de/pdf/hohlkegel/tf.pdf [dostęp: 01.04.2023].
  37. BETE Europe GmbH, Catalog card nozzles NF 2023, https://www.bete-dysze.pl/files/bete-duesen-de/pdf/flachstrahl/nf.pdf [dostęp: 01.04.2023].
  38. BETE Europe GmbH, Catalog card nozzles CW 2023, https://www.bete-dysze.pl/files/bete-duesen-de/pdf/voll-kegel/cw.pdf [dostęp: 01.04.2023].
  39. Węsierski T., Effectiveness of water curtains during fighting against vapors of saturated linear low molecular mass alcohols during its uncontrolled release, “Przemysł Chemiczny” 2015, 5, 728–730, https://doi.org/10.15199/62.2015.5.13.
  40. Majder-Łopatka M., Węsierski T., Wąsik W., Wpływ typu dyszy rozpylającej na skuteczność absorpcji obłoku amoniaku powstałego w wyniku awarii przemysłowej, BiTP Vol.42 Issue 2, 2016, pp, 127–134, https://doi.org/10.12845/bitp.42.2.2016.13.
  41. Gałaj, J., Drzymała, T., Piątek P., Analysis of influence of tilt angle on the distribution of water droplets diameters in a spray generated by the turbo master 52 nozzle “Procedia Engineering” 2017, 172, 300–309. https://doi.org/10.1016/j.proeng.2017.02.118.
  42. Kraus-Namroży N., Brzezińska D., Effectiveness of swirl water mist nozzles for fire suppression, “International Journal of Environmental Research and Public Health” 2022, 19(23), https://doi.org/10.3390/ijerph192316328.
  43. Buchlin J.-M., Thermal shielding by water spray curtain, “Journal of Loss Prevention in the Process Industries” 2005, 18(4-6), 423–432, https://doi.org/10.1016/j.jlp.2005.06.039.
  44. Piatek P., Gałaj J., Analysis of the influence of the spraying angle on the distribution of sprinkling intensity by a selected turbo water nozzle, “ MATEC Web of Conferences” 2018, 247, https://doi.org/10.1051/matecconf/201824700008.
  45. Cote A.E., Fire protection handbook, National Fire Protection Association, Inc., Quincy, Massachusetts 2003.
  46. PN-EN 12259-1:2005 Stałe urządzenia gaśnicze. Podzespoły urządzeń tryskaczowych i zraszaczowych – Część 1: Tryskacze.
  47. PN-EN 12845:2008 Stałe urządzenia gaśnicze. Automatyczne urządzenia tryskaczowe. Projektowanie, instalowanie i konserwacja.
  48. PN-EN 14972-1:2021 Stałe urządzenia gaśnicze. Zestawy instalacji mgły wodnej – Część 1: Projektowanie, instalacja, przegląd i konserwacja.
  49. NFPA 750 Standard on Water Mist Fire Protection Systems [Systemy gaśnicze na mgłę wodną], Standard Narodowego Stowarzyszenia Ochrony Przeciwpożarowej, Quincy 2023.
  50. Gai G., Hadjadj A., Kudriakov S., Mimouni S., Thomine O., Numerical study of spray-induced turbulence using industrial fire-mitigation nozzles, “Energies” 2021, 14(4), 1135, https://doi.org/10.3390/en14041135.