Abstrakt
Cel: Celem artykułu była empiryczna weryfikacja hipotezy, że deskryptory jakości obrazu oraz artefaktów przetwarzania mogą stanowić stabilny i interpretowalny fundament detekcji deepfake w warunkach rzeczywistej dystrybucji (ang. in-the-wild). Badanie miało na celu zidentyfikowanie mierzalnych cech wizualnych, zakorzenionych w fizyce akwizycji i przetwarzania sygnału, które pozwalają rozróżniać treści syntetyczne od autentycznych z wysoką odpornością na degradacje platformowe i manipulacje rekodujące.
Projekt i metody: Opracowano i wykorzystano zbiór danych DeepFake RealWorld (DFRW) obejmujący 46 371 klipów (4186 autentycznych i 42 185 syntetycznych), odzwierciedlający rzeczywiste łańcuchy przetwarzania i modele generacyjne (GAN, dyfuzja, reenactment, face swap). Dla każdego nagrania obliczono zestaw 20 deskryptorów jakości i artefaktów, w tym BRISQUE, NIQE, PIQE, BLIINDS II, V-BLIINDS, CPBD, Wang–Bovik, PRNU, CFA i markery podwójnej kompresji. Selekcję cech przeprowadzono bez klasyfikatorów, poprzez progowanie anomalii definiowanych na klasie rzeczywistej oraz obliczenie wskaźników p_df, p_real, Δp i PR z kontrolą FDR dla stabilności i odporności na degradacje platformowe.
Wyniki: Uzyskano istotne różnice między treściami syntetycznymi i autentycznymi: średnio p_df = 41,92%, p_real = 26,54%, Δp = 0,15, PR = 1,56. Najwyższą skuteczność i stabilność w detekcji deepfake wykazały BRISQUE, PIQE, Wang–Bovik i wariancja Laplasjanu, które pozostawały odporne na rekodowania i filtry mobilne. Cechy PRNU, CFA oraz podwójna kompresja zwiększały wartość dowodową w materiałach wysokiej jakości. Zbiór cech jakości i artefaktów przetwarzania zachował stabilność w warunkach typowych dla dystrybucji internetowej i może być wykorzystany do kalibracji niepewności oraz walidacji systemów forensycznych.
Wnioski: Zidentyfikowane deskryptory jakości i artefaktów przetwarzania stanowią interpretowalny i odporny fundament detekcji deepfake, łączący cechy percepcyjne i techniczne z fizyką akwizycji. Zbiór danych DFRW umożliwia budowę hybrydowych, wyjaśnialnych detektorów łączących analizę cech IQA z modelami uczenia głębokiego. Przyszłe badania (DFRWv2) skoncentrują się na rozszerzeniu zbioru do ≥ 500 000 klipów z pełnym udziałem modeli dyfuzyjnych i multimodalnością audio-wideo w celu standaryzacji raportowania parametrów θ, p_df, p_real, Δp, PR i 95% CI w analizach forensycznych.
Słowa kluczowe: deepfake, detekcja, jakość obrazu, artefakty przetwarzania, BRISQUE, NIQE, Wang–Bovik, PRNU, podwójna kompresja, DFRW
Typ artykułu: oryginalny artykuł naukowy
Bibliografia:
- Brown T., Mann B., Ryder N., Subbiah M., Kaplan J.D., Dhariwal P. i in., Language models are few-shot learners, „Advances in Neural Information Processing Systems” 2020, 33, 1877–1901, https://doi.org/10.48550/arXiv.2005.14165 .
- Achiam J., Adler S., Agarwal S., Ahmad L., Akkaya I., Aleman F.L. i in., GPT-4 technical report, 2023, https://doi.org/10.48550/arXiv.2303.08774 .
- Perov I., Gao D., Chervoniy N., Li K., Marangond S., Um C. i in., DeepFaceLab: Integrated, flexible and extensible face-swapping framework, 2020, https://doi.org/10.48550/arXiv.2005.05535 .
- Roop GitHub, https://github.com/s0md3v/roop [dostęp: 10.10.2025].
- Chen R., Chen X., N. B., Ge Y., SimSwap: An efficient framework for high fidelity face swapping, Proceedings of the 28th ACM International Conference on Multimedia, 2020, 2003–2011.
- Chesney B., Citron D., Deep fakes: A looming challenge for privacy, democracy, and national security, „California Law Review” 2019, 107, 1753, https://doi.org/10.2139/ssrn.3213954 .
- Jędrasiak K., Audio stream analysis for deep fake threat identification, „Civitas et Lex” 2024, 41(1), 21–35, https://doi.org/10.31648/cetl.9684 .
- Bikhchandani S., Hirshleifer D., Welch I., A theory of fads, fashion, custom, and cultural change as informational cascades, „Journal of Political Economy” 1992, 100(5), 992–1026, https://doi.org/10.1086/261849 .
- Badawy A., Lerman K., Ferrara E., Who falls for online political manipulation?, Companion Proceedings of the 2019 World Wide Web Conference, 2019, 162–168.
- DiResta R., The supply of disinformation will soon be infinite, „The Atlantic” 2020, 20(9).
- Europol, Online fraud schemes: A web of deceit, IOCTA 2023.
- United Nations Office on Drugs and Crime, Emerging threats: The intersection of criminal and technological innovation in the use of automation and AI, Cybercrime Technical Brief Series, 2025.
- Federal Bureau of Investigation Internet Crime Complaint Center, Internet Crime Report, FBI IC3, 2023.
- Europol, Facing reality? Law enforcement and the challenge of deepfakes, Observatory Report from the Europol Innovation Lab, Publications Office of the European Union, Luxembourg 2022.
- Dolhansky B., Bitton J., Pflaum B., Lu J., Howes R., Wang M., Ferrer C.C., The deepfake detection challenge (DFDC) dataset, 2020, https://doi.org/10.48550/arXiv.2006.07397 .
- Korshunov P., Marcel S., Deepfakes: A new threat to face recognition? Assessment and detection, 2018, https://doi.org/10.48550/arXiv.1812.08685 .
- Wang Z., Bovik A.C., A universal image quality index, „IEEE Signal Processing Letters” 2002, 9(3), 81–84, https://doi.org/10.1109/97.995823 .
- Guo C., Pleiss G., Sun Y., Weinberger K.Q., On calibration of modern neural networks, International Conference on Machine Learning, 2017, 1321–1330.
- Matern F., Riess C., Stamminger M., Exploiting visual artifacts to expose deepfakes and face manipulations, IEEE Winter Applications of Computer Vision Workshops (WACVW), 2019, 83–92.
- Guarnera L., Giudice O., Battiato S., Deepfake detection by analyzing convolutional traces, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, 666–667.
- Farid H., Image forgery detection, „IEEE Signal Processing Magazine” 2009, 26(2), 16–25, https://doi.org/10.1109/MSP.2008.931079 .
- Ray S., Applied photographic optics, Routledge, 2002.
- Tolosana R., Vera-Rodriguez R., Fierrez J., Morales A., Ortega-Garcia J., Deepfakes and beyond: A survey of face manipulation and fake detection, „Information Fusion” 2020, 64, 131–148, https://doi.org/10.1016/j.inffus.2020.06.014 .
- Neves J.C., Tolosana R., Vera-Rodriguez R., Lopes V., Proença H., Fierrez J., GAN fingerprints in face image synthesis, Multimedia Forensics, Springer, Singapore 2022, 175–204.
- Agarwal S., Farid H., Gu Y., He M., Nagano K., Li H., Protecting world leaders against deep fakes, CVPR Workshops, 2019.
- Verdoliva L., Media forensics and deepfakes: An overview, „IEEE Journal of Selected Topics in Signal Processing” 2020, 14(5), 910–932, https://doi.org/10.1109/JSTSP.2020.3002101 .
- Haliassos A., Vougioukas K., Petridis S., Pantic M., Lips don't lie: A generalisable and robust approach to face forgery detection, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, 5039–5049.
- Rössler A., Cozzolino D., Verdoliva L., Riess C., Thies J., Nießner M., FaceForensics++: Learning to detect manipulated facial images, Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, 1–11.
- Li Y., Yang X., Sun P., Qi H., Lyu S., Celeb-DF: A large-scale challenging dataset for deepfake forensics, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, 3207–3216.
- Jiang L., Li R., Wu W., Qian C., Loy C.C., DeeperForensics-1.0: A large-scale dataset for real-world face forgery detection, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, 2889–2898.
- Ho J., Jain A., Abbeel P., Denoising diffusion probabilistic models, Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020, 33, 6840–6851.
- Mildenhall B., Srinivasan P.P., Tancik M., Barron J.T., Ramamoorthi R., Ng R., NeRF: Representing scenes as neural radiance fields for view synthesis, „Communications of the ACM” 2021, 65(1), 99–106, https://doi.org/10.1145/3503250 .
- Durall R., Keuper M., Keuper J., Watch your up-convolution: CNN-based generative deep neural networks are failing to reproduce spectral distributions, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, 7890–7899.
- Ricker J., Damm S., Holz T., Fischer A., Towards the detection of diffusion model deepfakes, https://doi.org/10.48550/arXiv.2210.14571 .
- Yang X., Li Y., Lyu S., Exposing deep fakes using inconsistent head poses, ICASSP 2019 – IEEE International Conference on Acoustics, Speech and Signal Processing, 2019, 8261–8265.
- Wang T., Liao X., Chow K.P., Lin X., Wang Y., Deepfake detection: A comprehensive survey from the reliability perspective, „ACM Computing Surveys” 2024, 57(3), 1–35, https://doi.org/10.1145/3699710 .
- Cozzolino D., Pianese A., Nießner M., Verdoliva L., Audio-visual person-of-interest deepfake detection, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, 943–952.
- Tariq S., Lee S., Woo S., One detector to rule them all: Towards a general deepfake attack detection framework, Proceedings of the Web Conference, 2021, 3625–3637.
- Lu Y., Luo R., Ebrahimi T., A novel framework for assessment of learning-based detectors in realistic conditions with application to deepfake detection, 2022, https://doi.org/10.48550/arXiv.2203.11797 .
- Cao X., Gong N.Z., Understanding the security of deepfake detection, International Conference on Digital Forensics and Cyber Crime, Springer, Cham 2021, 360–378.
- Ju Y., Jia S., Ke L., Xue H., Nagano K., Lyu S., Fusing global and local features for generalized AI-synthesized image detection, IEEE International Conference on Image Processing, 2022, 3465–3469.
- Carlini N., Jagielski M., Choquette-Choo C.A., Paleka D., Pearce W., Anderson H. i in., Poisoning web-scale training datasets is practical, IEEE Symposium on Security and Privacy, 2024, 407–425.
- Doshi-Velez F., Kim B., Towards a rigorous science of interpretable machine learning, 2017, https://doi.org/10.48550/arXiv.1702.08608 .
- Selvaraju R.R., Cogswell M., Das A., Vedantam R., Parikh D., Batra D., Grad-CAM: Visual explanations from deep networks via gradient-based localization, Proceedings of the IEEE International Conference on Computer Vision, 2017, 618–626.
- Odena A., Dumoulin V., Olah C., Deconvolution and checkerboard artifacts, „Distill” 2016, 1(10), e3, https://doi.org/10.23915/distill.00003 .
- Zhang K., Zuo W., Zhang L., Learning a single convolutional super-resolution network for multiple degradations, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, 3262–3271.
- Mittal A., Moorthy A.K., Bovik A.C., No-reference image quality assessment in the spatial domain, „IEEE Transactions on Image Processing” 2012, 21(12), 4695–4708, https://doi.org/10.1109/TIP.2012.2214050 .
- Teed Z., Deng J., RAFT: Recurrent all-pairs field transforms for optical flow, European Conference on Computer Vision, Springer, Cham 2020, 402–419.
- Chung J.S., Zisserman A., Lip reading in the wild, Asian Conference on Computer Vision, Springer, Cham 2016, 87–103.
- Prajwal K.R., Mukhopadhyay R., Namboodiri V.P., Jawahar C.V., A lip sync expert is all you need for speech to lip generation in the wild, Proceedings of the 28th ACM International Conference on Multimedia, 2020, 484–492.
- Baltrušaitis T., Ahuja C., Morency L.P., Multimodal machine learning: A survey and taxonomy, „IEEE Transactions on Pattern Analysis and Machine Intelligence” 2019, 41(2), 423–443, https://doi.org/10.1109/TPAMI.2018.2798607 .
- Frank J., Eisenhofer T., Schönherr L., Fischer A., Kolossa D., Holz T., Leveraging frequency analysis for deep fake image recognition, International Conference on Machine Learning, 2020, 3247–3258.
- Mittal A., Soundararajan R., Bovik A.C., Making a “completely blind” image quality analyzer, „IEEE Signal Processing Letters” 2012, 20(3), 209–212, https://doi.org/10.1109/LSP.2012.2227726 .
- Venkatanath N., Praneeth D., Sumohana S.C., Swarup S.M., Blind image quality evaluation using perception-based features, IEEE 21st National Conference on Communications (NCC), 2015, 1–6.
- Saad M.A., Bovik A.C., Charrier C., Blind image quality assessment: A natural scene statistics approach in the DCT domain, „IEEE Transactions on Image Processing” 2012, 21(8), 3339–3352, https://doi.org/10.1109/TIP.2012.2191563 .
- Narvekar N.D., Karam L.J., A no-reference image blur metric based on the cumulative probability of blur detection (CPBD), „IEEE Transactions on Image Processing” 2011, 20(9), 2678–2683, https://doi.org/10.1109/TIP.2011.2131660 .
- Pech-Pacheco J.L., Cristóbal G., Chamorro-Martinez J., Fernández-Valdivia J., Diatom autofocusing in brightfield microscopy: A comparative study, IEEE Proceedings of the 15th International Conference on Pattern Recognition (ICPR), 2000, Vol. 3, 314–317.
- Pertuz S., Puig D., Garcia M.A., Analysis of focus measure operators for shape-from-focus, „Pattern Recognition” 2013, 46(5), 1415–1432, https://doi.org/10.1016/j.patcog.2012.11.011 .
- ISO 12233:2017. Photography — Electronic still picture imaging — Resolution and spatial frequency responses.
- ITU-T H.264:2019. Advanced Video Coding for Generic Audiovisual Services.
- ISO/IEC 23008-2:2017. Information technology — High efficiency video coding.
- Damera-Venkata N., Kite T.D., Geisler W.S., Evans B.L., Bovik A.C., Image quality assessment based on a degradation model, „IEEE Transactions on Image Processing” 2000, 9(4), 636–650, https://doi.org/10.1109/83.841940 .
- Mahdian B., Saic S., Detection of copy–move forgery using a method based on blur moment invariants, „Forensic Science International” 2007, 171(2–3), 180–189, https://doi.org/10.1016/j.forsciint.2006.11.002 .
- Bianchi T., Piva A., Image forgery localization via block-grained analysis of JPEG artifacts, „IEEE Transactions on Information Forensics and Security” 2012, 7(3), 1003–1017, https://doi.org/10.1109/TIFS.2012.2187516 .
- Amerini I., Ballan L., Caldelli R., Del Bimbo A., Serra G., A SIFT-based forensic method for copy–move attack detection and transformation recovery, „IEEE Transactions on Information Forensics and Security” 2011, 6(3), 1099–1110, https://doi.org/10.1109/TIFS.2011.2129512 .
- Rublee E., Rabaud V., Konolige K., Bradski G., ORB: An efficient alternative to SIFT or SURF, IEEE International Conference on Computer Vision, 2011, 2564–2571.
- Lukas J., Fridrich J., Goljan M., Digital camera identification from sensor pattern noise, „IEEE Transactions on Information Forensics and Security” 2006, 1(2), 205–214, https://doi.org/10.1109/TIFS.2006.873602.
- Popescu A.C., Farid H., Exposing digital forgeries by detecting duplicated image regions, Computer Science Technical Reports, Dartmouth College, 2004.
- Benjamini Y., Hochberg Y., Controlling the false discovery rate: A practical and powerful approach to multiple testing, „Journal of the Royal Statistical Society: Series B” 1995, 57(1), 289–300, https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.
- EU DisinfoLab Annual Conference. Conference Dossier 2023, https://www.disinfo.eu/wp-content/uploads/2023/11/Disinfo2023-conference-dossier.pdf [dostęp: 10.10.2025].
- Lowe D.G., Distinctive image features from scale-invariant keypoints, „International Journal of Computer Vision” 2004, 60(2), 91–110, https://doi.org/10.1023/B:VISI.0000029664.99615.94.